File: bootSem.R

package info (click to toggle)
r-cran-sem 3.1.16-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 936 kB
  • sloc: ansic: 2,241; cpp: 1,646; sh: 4; makefile: 2
file content (187 lines) | stat: -rw-r--r-- 7,180 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# bootstrapped standard errors and confidence intervals for sem

# last modified 2015-06-09 by J. Fox

boot.sem <- function(...) {
	.Deprecated("bootSem", package="sem")
	bootSem(...)
}

bootSem <- function (model, ...){
    UseMethod("bootSem")
}

bootSem.sem <- function(model, R=100, Cov=cov, data=model$data,  max.failures=10, show.progress=TRUE, ...){
    refit <- function(){
        indices <- sample(N, N, replace=TRUE)
        S <- Cov(data[indices,])
        refitted.model <- sem(ram, S, N, param.names=coef.names, var.names=var.names,
            	optimizer=model$optimizer, objective=model$objective, ...)
        refitted.model$coeff
        }
#    if (!require("boot")) stop("package boot not available")
#	has.tcltk <- require("tcltk")
#	  pb <- tkProgressBar("Bootstrap Sampling", "Bootstrap sample: ", 0, R)
    if (show.progress){
        cat("\n", R, "bootstrap replications\n")
        pb <- txtProgressBar(min=0, max=R, style=3)
    }
    # the following 2 lines borrowed from boot in package boot
    if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1)
    seed <- get(".Random.seed", envir = .GlobalEnv, inherits = FALSE)
    warn <- options(warn=-2)
    on.exit(options(warn)) # insure restore even in event of error
    nErrors <- 0
	if (is.null(data)) stop("the model object doesn't contain a data matrix")
    N <- nrow(data)
    coefficients <- model$coeff
    coef.names <- names(coefficients)
    var.names <- model$var.names 
    ram <- model$ram 
    ram[coef.names, "start value"] <- coefficients 
    coefs <- matrix(numeric(0), R, length(coefficients))
    colnames(coefs) <- coef.names
    for (b in 1:R){
#		setTkProgressBar(pb, b, label=sprintf("Bootstrap sample: %d", b))
        if (show.progress) setTxtProgressBar(pb, b)
        for (try in 1:(max.failures + 1)){
            if (try >  max.failures) stop("more than ",  max.failures, " consecutive convergence failures")
            res <- try(refit(), silent=TRUE)
            if (inherits(res, "try-error")) nErrors <- nErrors + 1
            else {
                coefs[b,] <- res
                break()
                }
            }
        }
    options(warn)
    if (nErrors > 0) warning("there were", nErrors, 
        "apparent convergence failures;\nthese are discarded from the",
        R, "bootstrap replications returned")
    res <- list(t0=coefficients, t=coefs, R=R, data=data, seed=seed,
        statistic=refit, sim="ordinary", stype="i", call=match.call(),
        strata=rep(1, N), weights=rep(1/N, N))
    res$call[[1]] <- as.name("bootSem")
	if (show.progress) close(pb)
    class(res) <- c("bootsem", "boot")
    res
    }

bootSem.msem <- function(model, R=100, Cov=cov, data=model$data,  max.failures=10, show.progress=TRUE, ...){
    refit <- function(){
        for (g in 1:G){
            indices <- sample(N[g], N[g], replace=TRUE)
            S[[g]] <- Cov(data[[g]][indices, ])
        }
        refitted.model <- sem(ram, S, N, param.names=coef.names, var.names=var.names,
        		optimizer=model$optimizer, objective=model$objective, fixed.x=model$fixed.x, ...)
        refitted.model$coeff
        }
#    if (!require("boot")) stop("package boot not available")
#	has.tcltk <- require("tcltk")
#	  pb <- tkProgressBar("Bootstrap Sampling", "Bootstrap sample: ", 0, R)
    if (show.progress){
        cat("\n", R, "bootstrap replications\n")
        pb <- txtProgressBar(min=0, max=R, style=3)
    }
    # the following 2 lines borrowed from boot in package boot
    if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1)
    seed <- get(".Random.seed", envir = .GlobalEnv, inherits = FALSE)
    warn <- options(warn=-2)
    on.exit(options(warn)) # insure restore even in event of error
    nErrors <- 0
	if (is.null(data)) stop("the model object doesn't contain data matrices")
    N <- sapply(data, nrow)
    coefficients <- model$coeff
    coef.names <- names(coefficients)
    var.names <- model$var.names 
    ram <- model$ram 
    groups <- model$groups
    group <- model$group
    G <- length(groups)
    S <- vector(G, mode="list")
    for (g in 1:G){
        pars <- ram[[g]][, "parameter"]
        free <- pars != 0
        ram[[g]][free, "start value"] <- coefficients[pars[free]]
    }
    coefs <- matrix(numeric(0), R, length(coefficients))
    colnames(coefs) <- coef.names
    for (b in 1:R){
#		setTkProgressBar(pb, b, label=sprintf("Bootstrap sample: %d", b))
        if (show.progress) setTxtProgressBar(pb, b)
        for (try in 1:(max.failures + 1)){
            if (try >  max.failures) stop("more than ",  max.failures, " consecutive convergence failures")
            res <- try(refit(), silent=TRUE)
            if (inherits(res, "try-error")) nErrors <- nErrors + 1
            else {
                coefs[b,] <- res
                break()
                }
            }
        }
    options(warn)
    if (nErrors > 0) warning("there were", nErrors, 
        "apparent convergence failures;\nthese are discarded from the",
        R, "bootstrap replications returned")
    res <- list(t0=coefficients, t=coefs, R=R, data=data, seed=seed,
        statistic=refit, sim="ordinary", stype="i", call=match.call(),
        strata=rep(1:G, N), weights=rep(1/N, N))
    res$call[[1]] <- as.name("bootSem")
	if (show.progress) close(pb)
    class(res) <- c("bootsem", "boot")
    res
    }

        
print.bootsem <- function(x, digits=getOption("digits"), ...){
    t <- x$t
    t0 <- x$t0
    result <- data.frame("Estimate"=t0, "Bias"=colMeans(t) - t0, 
        "Std.Error"=apply(t, 2, sd))
    rownames(result) <- names(t0)
    cat("Call: ")
    dput(x$call)
    cat("\n")
    print(result, digits=digits)
    invisible(x)
    }

summary.bootsem <- function(object,
    type=c("perc", "bca", "norm", "basic", "none"), level=0.95, ...){
    type <- match.arg(type)
    t <- object$t
    t0 <- object$t0
    result <- data.frame("Estimate"=t0, "Bias"=colMeans(t) - t0, 
        "Std.Error"=apply(t, 2, sd))
    if (type != "none"){
        p <- length(t0)
        lower <- upper <- rep(0, p)
        low <- if (type == "norm") 2 else 4
        up  <- if (type == "norm") 3 else 5 
        for (i in 1:p){
            ci <- as.vector(boot.ci(object, type=type, index=i, 
                conf=level)[[type, exact=FALSE]])
            lower[i] <- ci[low]
            upper[i] <- ci[up]
            }
        result$Lower <- lower
        result$Upper <- upper
        }    
    rownames(result) <- names(t0)
    result <- list(table=result, call=object$call, level=level, type=type)
    class(result) <- "summary.bootsem"
    result
    }

print.summary.bootsem <- function(x, digits=getOption("digits"), ...){
    cat("Call: ")
    dput(x$call)
    cat("\n")
    if (x$type != "none") {
        cat(paste("Lower and upper limits are for the", 100*x$level, 
            "percent", x$type, "confidence interval\n\n"))
        }
    print(x$table, digits=digits)
    invisible(return(x))
    }