1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
# last modified 2015-06-09 by J. Fox
# some changes by Benjamin K Goodrich 2015-01-20
miSem <- function(model, ...){
UseMethod("miSem")
}
miSem.semmod <- function(model, ..., data, formula = ~., raw=FALSE, fixed.x=NULL, objective=objectiveML,
n.imp=5, n.chains=n.imp, n.iter=30, seed=sample(1e6, 1), mi.args=list(), show.progress=TRUE){
cls <- gsub("\\.", "", deparse(substitute(objective)))
cls <- gsub("2", "", cls)
cls <- c(cls, "sem")
warn <- options(warn=-1)
on.exit(options(warn))
initial.fit <- sem(model, ..., data=data, formula=formula, raw=raw, fixed.x=fixed.x,
objective = if (raw) objectiveFIML else objective)
options(warn)
class(initial.fit) <- if (raw) c("objectiveFIML", "sem") else cls
coefficients <- coefficients(initial.fit)
coef.names <- names(coefficients)
var.names <- initial.fit$var.names
ram <- initial.fit$ram
ram[coef.names, "start value"] <- coefficients
N <- nrow(data)
if (!is.null(fixed.x)) fixed.x <- apply(outer(var.names, fixed.x, "=="), 2, which)
mi.args$n.chains <- n.chains
mi.args$n.iter <- n.iter
mi.args$seed <- seed
mi.args$y <- data
if (show.progress) cat("\n Beginning", n.imp, "imputations\n")
mi.data <- do.call("mi", mi.args)
if (show.progress) cat("\n Imputations complete\n")
# has.tcltk <- require("tcltk")
# if (has.tcltk) pb <- tkProgressBar("Fitting", "Imputation no.: ", 0, n.imp)
if (show.progress) {
cat("\n Fitting model to imputations:\n")
pb <- txtProgressBar(min=0, max=n.imp, style=3)
}
fits <- complete(mi.data, m = n.imp, include_missing = FALSE)
for (i in seq_along(fits)) {
# if (has.tcltk) setTkProgressBar(pb, i, label=sprintf("Imputation no.: %d", i))
if (show.progress) setTxtProgressBar(pb, i)
data.i <- model.frame(formula, data=fits[[i]])
data.i <- model.matrix(formula, data=fits[[i]])
colnames(data.i)[colnames(data.i) == "(Intercept)"] <- "Intercept"
S <- if (raw) rawMoments(data.i) else {
data.i <- data.i[, colnames(data.i) != "Intercept"]
cov(data.i)
}
fit <- sem(ram, S=S, N=N, data=data.i, raw=raw, param.names=coef.names, var.names=var.names, fixed.x=fixed.x,
optimizer=initial.fit$optimizer, objective=objective, ...)
class(fit) <- cls
fits[[i]] <- fit
}
# if (has.tcltk) close(pb)
if (show.progress) close(pb)
result <- list(initial.fit=initial.fit, mi.fits=fits, imputations=mi.data, seed=seed, mi.data=mi.data)
class(result) <- "miSem"
result
}
miSem.semmodList <- function(model, ..., data, formula = ~., group, raw=FALSE,
fixed.x=NULL, objective=msemObjectiveML,
n.imp=5, n.chains=n.imp, n.iter=30, seed=sample(1e6, 1), mi.args=list(),
show.progress=TRUE){
if (missing(formula)) formula <- as.formula(paste("~ . -", group))
warn <- options(warn=-1)
on.exit(options(warn))
initial.fit <- sem(model, ..., data=na.omit(data), formula=formula, group=group, raw=raw, fixed.x=fixed.x,
objective = objective)
options(warn)
coefficients <- coefficients(initial.fit)
coef.names <- names(coefficients)
var.names <- initial.fit$var.names
ram <- initial.fit$ram
groups <- initial.fit$groups
group <- initial.fit$group
G <- length(groups)
for (g in 1:G){
pars <- ram[[g]][, "parameter"]
free <- pars != 0
ram[[g]][free, "start value"] <- coefficients[pars[free]]
}
mi.args$n.chains <- n.chains
mi.args$n.iter <- n.iter
mi.args$seed <- seed
mi.args$y <- data
if (show.progress) cat("\n Beginning", n.imp, "imputations\n")
mi.data <- do.call("mi", mi.args)
if (show.progress) cat("\n Imputations complete\n")
fits <- complete(mi.data, m = n.imp, include_missing = FALSE)
# has.tcltk <- require("tcltk")
# if (has.tcltk) pb <- tkProgressBar("Fitting", "Imputation no.: ", 0, n.imp)
if (show.progress) {
cat("\n Fitting model to imputations:\n")
pb <- txtProgressBar(min=0, max=n.imp, style=3)
}
for (i in 1:n.imp){
# if (has.tcltk) setTkProgressBar(pb, i, label=sprintf("Imputation no.: %d", i))
if (show.progress) setTxtProgressBar(pb, i)
data.i <- fits[[i]]
group.i <- data.i[, group]
data.i <- model.frame(formula, data=data.i)
data.i <- model.matrix(formula, data=data.i)
colnames(data.i)[colnames(data.i) == "(Intercept)"] <- "Intercept"
S <- data.out <- vector(G, mode="list")
N <- numeric(G)
for (g in 1:G){
data.g <- data.i[group.i == groups[g], ]
data.out[[g]] <- data.g
N[g] <- nrow(data.g)
S[[g]] <- if (raw) rawMoments(data.g) else {
data.g <- data.g[, colnames(data.g) != "Intercept"]
cov(data.g)
}
}
fit <- sem(ram, S=S, N=N, group=group, groups=groups, raw=raw, data=data.out,
fixed.x=initial.fit$fixed.x, param.names=coef.names, var.names=var.names,
optimizer=initial.fit$optimizer, objective=objective, ...)
fits[[i]] <- fit
}
# if (has.tcltk) close(pb)
if (show.progress) close(pb)
result <- list(initial.fit=initial.fit, mi.fits=fits, imputations=mi.data, seed=seed, mi.data=mi.data)
class(result) <- "miSem"
result
}
print.miSem <- function(x, ...){
coefs <- sapply(x$mi.fits, coef)
vars <- sapply(x$mi.fits, function(x) diag(vcov(x)))
table <- matrix(0, NROW(coefs), 4)
table[, 1] <- rowMeans(coefs)
ses <- sqrt(rowMeans(vars) + apply(coefs, 1, var) * (1 + 1/NCOL(coefs)))
table[, 2] <- ses
table[, 3] <- table[, 1]/table[, 2]
table[, 4] <- 2*pnorm(abs(table[, 3]), lower.tail=FALSE)
rownames(table) <- rownames(coefs)
cat("\nCoefficients:\n")
colnames(table) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
printCoefmat(table, ...)
invisible(x)
}
summary.miSem <- function(object, digits=max(3, getOption("digits") - 2), ...){
coefs <- lapply(object$mi.fits, coef)
table <- do.call("cbind", coefs)
rownames(table) <- names(coefs[[1]])
table <- cbind(table, rowMeans(table), coef(object$initial.fit))
colnames(table) <- c(paste("Imputation", 1:length(coefs)), "Averaged", "Initial Fit")
result <- list(object=object, mi.results=table, digits=digits)
class(result) <- "summary.miSem"
result
}
print.summary.miSem <- function(x, ...){
cat("\nCoefficients by imputation:\n")
print(x$mi.results, digits=x$digits, ...)
print(x$object, digits=x$digits, ...)
invisible(x)
}
|