1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
# Two-Stage Least Squares
# John Fox
# last modified 2019-11-15 by J. Fox
tsls <- function (y, ...) {
UseMethod("tsls")
}
tsls.default <- function (y, X, Z, w, names = NULL, ...) {
if (is.null(w)) w <- 1
if (any(w < 0 | is.na(w)))
stop("missing or negative weights not allowed")
n <- length(y)
p <- ncol(X)
sqrt.w <- sqrt(w)
invZtZ <- solve(crossprod(Z*sqrt.w))
XtZ <- crossprod(X*w, Z)
V <- chol2inv(chol(XtZ %*% invZtZ %*% t(XtZ)))
b <- V %*% XtZ %*% invZtZ %*% crossprod(Z*w, y)
residuals <- (y - X %*% b)*sqrt.w
s2 <- sum(residuals^2)/(n - p)
V <- s2 * V
result <- list()
result$n <- n
result$p <- p
b <- as.vector(b)
names(b) <- names
result$coefficients <- b
rownames(V) <- colnames(V) <- names
result$V <- V
result$s <- sqrt(s2)
result$residuals <- as.vector(residuals)
result$response <- y
result$model.matrix <- X
result$instruments <- Z
result$weights <- w
result
}
tsls.formula <- function (formula, instruments, data, subset, weights, na.action, contrasts = NULL, ...) {
if (missing(na.action))
na.action <- options()$na.action
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, sys.frame(sys.parent()))))
m$data <- as.data.frame(data)
response.name <- deparse(formula[[2]])
form <- as.formula(paste(paste(response.name, collapse = ""),
"~", paste(deparse(formula[[3]]), collapse = ""), "+",
paste(deparse(instruments[[2]]), collapse = "")))
m$formula <- form
m$instruments <- m$contrasts <- NULL
m[[1]] <- as.name("model.frame")
mf <- eval(m, sys.frame(sys.parent()))
na.act <- attr(mf, "na.action")
w <- as.vector(model.weights(mf))
wt.var <- if(!is.null(w)) deparse(substitute(weights)) else NULL
Z <- model.matrix(instruments, data = mf, contrasts)
y <- mf[, response.name]
X <- model.matrix(formula, data = mf, contrasts)
result <- tsls(y, X, Z, w, colnames(X))
result$response.name <- response.name
result$formula <- formula
result$instruments <- instruments
result$wt.var <- wt.var
if (!is.null(na.act))
result$na.action <- na.act
class(result) <- "tsls"
result
}
print.tsls <- function (x, ...) {
cat("\nModel Formula: ")
print(x$formula)
cat("\nInstruments: ")
print(x$instruments)
if (!is.null(x$wt.var)){
cat("\nWeights: ", x$wt.var, "\n")
}
cat("\nCoefficients:\n")
print(x$coefficients)
cat("\n")
invisible(x)
}
summary.tsls <- function (object, digits=getOption("digits"), ...) {
save.digits <- options(digits = digits)
on.exit(options(save.digits))
df <- object$n - object$p
std.errors <- sqrt(diag(object$V))
b <- object$coefficients
t <- b/std.errors
p <- 2 * (1 - pt(abs(t), df))
table <- cbind(b, std.errors, t, p)
rownames(table) <- names(b)
colnames(table) <- c("Estimate", "Std. Error", "t value",
"Pr(>|t|)")
result <- list(formula=object$formula, instruments=object$instruments, wt.var=object$wt.var,
residuals=summary(residuals(object)), coefficients=table, digits=digits, s=object$s, df=df)
class(result) <- "summary.tsls"
result
}
print.summary.tsls <- function(x, ...){
cat("\n 2SLS Estimates\n")
cat("\nModel Formula: ")
print(x$formula)
cat("\nInstruments: ")
print(x$instruments)
if (!is.null(x$wt.var)){
cat("\nWeights: ", x$wt.var, "\n")
}
cat("\nResiduals:\n")
print(x$residuals)
cat("\n")
printCoefmat(x$coefficients, digits=x$digits)
cat(paste("\nResidual standard error:", round(x$s, x$digits),
"on", x$df, "degrees of freedom\n\n"))
invisible(x)
}
residuals.tsls <- function(object, ...){
res <- object$residuals
if (is.null(object$na.action))
res
else naresid(object$na.action, res)
}
coef.tsls <- function(object, ...){
object$coefficients
}
fitted.tsls <- function(object, ...){
yhat <- as.vector(object$model.matrix %*% object$coefficients)
if (is.null(object$na.action))
yhat
else napredict(object$na.action, yhat)
}
vcov.tsls <- function(object, ...) object$V
anova.tsls <- function(object, model.2, s2, dfe, ...){
if(!inherits(model.2, "tsls")) stop('requires two models of class tsls')
s2.1 <- object$s^2
n.1 <- object$n
p.1 <- object$p
dfe.1 <- n.1 - p.1
s2.2 <- model.2$s^2
n.2 <- model.2$n
p.2 <- model.2$p
dfe.2 <- n.2 - p.2
SS.1 <- s2.1 * dfe.1
SS.2 <- s2.2 * dfe.2
SS <- abs(SS.1 - SS.2)
Df <- abs(dfe.2 - dfe.1)
if (missing(s2)){
s2 <- if (dfe.1 > dfe.2) s2.2 else s2.1
f <- (SS/Df) / s2
RSS <- c(SS.1, SS.2)
Res.Df <- c(dfe.1, dfe.2)
SS <- c(NA, SS)
P <- c(NA, 1 - pf(f, Df, min(dfe.1, dfe.2)))
Df <- c(NA, Df)
f <- c(NA, f)
rows <- c("Model 1", "Model 2")
}
else{
f <- (SS/Df) / s2
RSS <- c(SS.1, SS.2, s2*dfe)
Res.Df <- c(dfe.1, dfe.2, dfe)
SS <- c(NA, SS, NA)
P <- c(NA, 1 - pf(f, Df, dfe), NA)
Df <- c(NA, Df, NA)
f <- c(NA, f, NA)
rows <- c("Model 1", "Model 2", "Error")
}
table <- data.frame(Res.Df, RSS, Df, SS, f, P)
head.1 <- paste("Model 1: ",format(object$formula), " Instruments:",
format(object$instruments))
head.2 <- paste("Model 2: ",format(model.2$formula), " Instruments:",
format(model.2$instruments))
names(table) <- c("Res.Df", "RSS", "Df", "Sum of Sq", "F", "Pr(>F)")
row.names(table) <- rows
structure(table, heading = c("Analysis of Variance", "", head.1, head.2, ""),
class = c("anova", "data.frame"))
}
|