1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
### SINGLE GROUP MODEL ###
ramModel <- function(A,S,F,M,manNames,latNames,Names,ObsCovs,ImpCovs,modelLabels = FALSE)
{
# Check if meanstructure is included:
meanstructure <- !missing(M)
# Input matrices either in matrix form or list containing 'est', 'std', ; fixed', and 'par' or 'parSpec' matrices. If 'stdComp' is in the list it overwrites 'std' (compatibility with 'lisrelToR' package):
# Or a list of such lists for each group.
# Check input, replace matrices with list:
mats <- c("A","S","F", "M")
for (m in mats)
{
if (!do.call(missing,list(m)))
{
assign(m,fixMatrix(get(m)))
} else {
assign(m,list())
}
}
### Fix matrices:
matList <- list(A,S,F)
Ng <- max(sapply(matList,length))
Nvar <- max(sapply(matList,function(x)sapply(x,function(y)ncol(y$est))))
if (length(F)>0 && !is.null(F[[1]]$est))
{
Nman <- max(sapply(F,function(y)nrow(y$est)))
} else
{
if (!missing(manNames)) Nman <- length(manNames) else Nman <- Nvar
}
if (!missing(manNames) & !missing(latNames))
{
if (Nvar!=length(c(manNames,latNames))) stop("Number of variables in model not equal to given number of names")
}
if (!missing(manNames))
{
if (Nman!=length(manNames)) stop("Number of manifest variables in model not equal to given number of names")
}
# Fix A:
if (length(A)==0)
{
A <- lapply(seq_len(Ng),function(x)list(est=matrix(0,Nvar,Nvar)))
} else if (length(A) < Ng) A <- rep(A,length=Ng)
# Fix S
if (length(S)==0)
{
S <- lapply(seq_len(Ng),function(x)list(est=matrix(0,Nvar,Nvar)))
} else if (length(S) < Ng) S <- rep(S,length=Ng)
# Fix F:
if (length(F)==0)
{
F <- lapply(seq_len(Ng),function(x)list(est=cbind(diag(1,Nman,Nman),matrix(0,Nman,Nvar-Nman))))
} else if (length(F) < Ng) F <- rep(F,length=Ng)
# Fix M:
if (length(M)==0)
{
M <- lapply(seq_len(Ng),function(x)list(est=rep(0,Nvar)))
} else if (length(M) < Ng) M <- rep(M,length=Ng)
### NAMES ###
# If names missing, set default::
if (missing(manNames))
{
if (length(F)>0 && !is.null(F[[1]]$est))
{
if (!is.null(colnames(F[[1]]$est)) && !modelLabels)
{
manNames <- colnames(F[[1]]$est)[colSums(F[[1]]$est)>0]
} else manNames <- paste0(rep("m",Nman),seq_len(Nman))
} else manNames <- paste0(rep("m",Nman),seq_len(Nman))
}
if (missing(latNames))
{
if (length(F)>0 && !is.null(F[[1]]$est))
{
if (!is.null(colnames(F[[1]]$est)) && !modelLabels)
{
latNames <- colnames(F[[1]]$est)[colSums(F[[1]]$est)==0]
} else latNames <- paste0(rep("l",Nvar-Nman),seq_len(Nvar-Nman))
} else latNames <- paste0(rep("l",Nvar-Nman),seq_len(Nvar-Nman))
}
if (missing(Names))
{
if (length(F)>0 && !is.null(F[[1]]$est))
{
if (!is.null(colnames(F[[1]]$est)) && !modelLabels)
{
Names <- colnames(F[[1]]$est)
} else Names <- c(manNames,latNames)
} else Names <- c(manNames,latNames)
}
Parss <- list()
dumPars <- data.frame(
label = character(0),
lhs = character(0),
edge = character(0),
rhs = character(0),
est = numeric(0),
std = numeric(0),
group = character(0),
fixed = logical(0),
par = numeric(0),
stringsAsFactors=FALSE)
if (missing(ImpCovs))
{
modCovs <- list()
}
for (g in 1:Ng)
{
# Compute model implied covariance matrix and standardized matrices:
# M is matrix list:
Mod <- list(A=A[[g]]$est, S=S[[g]]$est, F=F[[g]]$est)
IminAinv <- InvEmp(diag(1,nrow(Mod$A),ncol(Mod$A)) - Mod$A)
if (missing(ImpCovs))
{
modCovs[[g]] <- with(Mod, F %*% IminAinv %*% S %*% t(IminAinv) %*% t(F))
rownames(modCovs[[g]]) <- colnames(modCovs[[g]]) <- manNames
}
Mstd <- Mod
## Standardize matrices
I <- diag(nrow(Mod$S))
expCov <- IminAinv %*% Mod$S %*% t(IminAinv)
invSDs <- 1/sqrt(diag(expCov))
diag(I) <- invSDs
# standardize the A, S and M matrices
# A paths are value*sd(from)/sd(to) = I %*% A %*% solve(I)
# S paths are value/(sd(from*sd(to))) = I %*% S %*% I
Mstd$A <- I %*% Mod$A %*% solve(I)
Mstd$S <- I %*% Mod$S %*% I
# Store matrices:
if (length(A) > 0 && !is.null(A[[g]]$est) && is.null(A[[g]]$std)) A[[g]]$std <- Mstd$A
if (length(S) > 0 && !is.null(S[[g]]$est) && is.null(S[[g]]$std)) S[[g]]$std <- Mstd$S
# Extract matrices:
if (length(A)>0) APars <- modMat2Pars(A[[g]],"->","A",symmetric=FALSE,vec=FALSE,Names,Names,group=paste("Group",g),exprsup="") else APars <- dumPars
if (length(S)>0) SPars <- modMat2Pars(S[[g]],"<->","S",symmetric=TRUE,vec=FALSE,Names,Names,group=paste("Group",g),exprsup="") else SPars <- dumPars
if (length(M)>0) MPars <- modMat2Pars(M[[g]],"int","M",symmetric=FALSE,vec=TRUE,"",Names,group=paste("Group",g),exprsup="") else Mpars <- dumPars
# Combine ParsS:
Parss[[g]] <- rbind(APars,SPars,MPars)
# Remove zeroes:
Parss[[g]] <- Parss[[g]][Parss[[g]]$est!=0,]
}
Pars <- do.call(rbind,Parss)
# Variable dataframe:
Vars <- data.frame(
name = c(manNames,latNames),
manifest = c(manNames,latNames)%in%manNames,
exogenous = NA,
stringsAsFactors=FALSE)
# Remove duplicates plus factor loadings betwen mans and lats of same name:
Vars <- Vars[!duplicated(Vars$name),]
Pars <- Pars[!(Pars$lhs==Pars$rhs&Pars$edge!="<->"),]
semModel <- new("semPlotModel")
semModel@Pars <- Pars
semModel@Vars <- Vars
semModel@Original <- list()
if (!missing(ObsCovs))
{
semModel@ObsCovs <- list(ObsCovs)
} else {
semModel@ObsCovs <- list()
}
if (!missing(ImpCovs))
{
semModel@ImpCovs <- list(ImpCovs)
} else {
semModel@ImpCovs <- modCovs
}
semModel@Computed <- length(semModel@ImpCovs) > 0
return(semModel)
}
|