1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
# semPaths.sem <- function(object,...)
# {
# invisible(semPaths(semPlotModel(object),...))
# }
#
# semPaths.msem <- function(object,...)
# {
# invisible(semPaths(semPlotModel(object),...))
# }
#
# semPaths.msemObjectiveML <- function(object,...)
# {
# invisible(semPaths(semPlotModel(object),...))
# }
#
### SINGLE GROUP MODEL ###
semPlotModel.sem <- function(object, ...)
{
# Check if object is of class "sem":
if (!any(class(object)%in%c("sem","semmod"))) stop("Input must be a 'sem' object")
# Define Pars:
Pars <- data.frame(
label = rownames(object$ram),
lhs = object$ram[,3],
edge = "--",
rhs = object$ram[,2],
est = object$ram[,5],
std = standardizedCoefficients(object)[,2],
group = 1,
fixed = object$ram[,4]==0,
par = object$ram[,4],
stringsAsFactors=FALSE)
# Extract parameter estimates:
Pars$est[object$ram[,4]!=0] <- object$coef[object$ram[,4]]
# Fix labels:
for (i in unique(object$ram[,4][object$ram[,4]!=0]))
{
if (any(Pars$label[object$ram[,4]==i]=="") & any(Pars$label[object$ram[,4]==i]!=""))
{
Pars$label[object$ram[,4]==i & Pars$label==""] <- Pars$label[object$ram[,4]==i & Pars$label!=""]
}
}
# Name variables:
Pars$lhs <- object$var.names[Pars$lhs]
Pars$rhs <- object$var.names[Pars$rhs]
# Variable dataframe:
Vars <- data.frame(
name = object$var.names,
manifest = object$var.names %in% colnames(object$S),
exogenous = NA,
stringsAsFactors=FALSE)
# Define operators:
Pars$edge[object$ram[,1]==2] <- "<->"
Pars$edge[object$ram[,1]==1] <- "~>"
# Pars$op[object$ram[,1]==1 & !Vars$manifest[match(Pars$lhs,Vars$name)] & Vars$manifest[match(Pars$rhs,Vars$name)]] <- "->"
semModel <- new("semPlotModel")
semModel@Pars <- Pars
semModel@Vars <- Vars
semModel@Computed <- TRUE
semModel@Original <- list(object)
semModel@ObsCovs <- list(object$S)
semModel@ImpCovs <- list(object$C)
return(semModel)
}
### MUTLI GROUP MODEL ###
semPlotModel.msem <- semPlotModel.msemObjectiveML <- function(object, ...)
{
nGroup <- length(object$ram)
GroupNames <- object$groups
ParsS <- list()
stdobject <- standcoefmsem(object)
for (g in 1:nGroup)
{
# Define Pars:
Pars <- data.frame(
label = rownames(object$ram[[g]]),
lhs = object$ram[[g]][,3],
edge = "",
rhs = object$ram[[g]][,2],
est = object$ram[[g]][,5],
std = stdobject[[g]][,2],
group = GroupNames[g],
fixed = object$ram[[g]][,4]==0,
par = object$ram[[g]][,4],
stringsAsFactors=FALSE)
# Extract parameter estimates:
Pars$est[object$ram[[g]][,4]!=0] <- object$coef[object$ram[[g]][,4]]
# Fix labels:
for (i in unique(object$ram[[g]][,4][object$ram[[g]][,4]!=0]))
{
if (any(Pars$label[object$ram[[g]][,4]==i]=="") & any(Pars$label[object$ram[[g]][,4]==i]!=""))
{
Pars$label[object$ram[[g]][,4]==i & Pars$label==""] <- Pars$label[object$ram[[g]][,4]==i & Pars$label!=""]
}
}
# Name variables:
Pars$lhs <- object$var.names[[g]][Pars$lhs]
Pars$rhs <- object$var.names[[g]][Pars$rhs]
# Define operators:
Pars$edge[object$ram[[g]][,1]==2] <- "<->"
Pars$edge[object$ram[[g]][,1]==1] <- "->"
ParsS[[g]] <- Pars
}
Pars <- do.call("rbind",ParsS)
# Variable dataframe:
Vars <- data.frame(
name = unique(unlist(object$var.names)),
manifest = unique(unlist(object$var.names)) %in% unique(c(sapply(object$S,colnames))),
exogenous = NA,
stringsAsFactors=FALSE)
# Pars$op[object$ram[,1]==1 & !Vars$manifest[match(Pars$lhs,Vars$name)] & Vars$manifest[match(Pars$rhs,Vars$name)]] <- "->"
semModel <- new("semPlotModel")
semModel@Pars <- Pars
semModel@Vars <- Vars
semModel@Computed <- TRUE
semModel@Original <- list(object)
semModel@ObsCovs <- object$S
semModel@ImpCovs <- object$C
return(semModel)
}
|