1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
### Terrence D. Jorgensen & Andrew R. Johnson
### Last updated: 20 January 2025
### function to derive ordinal-scale moments implied by LRV-scale moments
##' Calculate Population Moments for Ordinal Data Treated as Numeric
##'
##' This function calculates ordinal-scale moments implied by LRV-scale moments
##'
##' Binary and ordinal data are frequently accommodated in SEM by incorporating
##' a threshold model that links each observed categorical response variable to
##' a corresponding latent response variable that is typically assumed to be
##' normally distributed (Kamata & Bauer, 2008; Wirth & Edwards, 2007).
##' This function can be useful for real-data analysis or for designing
##' Monte Carlo simulations, as described by Jorgensen and Johnson (2022).
##'
##' @importFrom stats dnorm setNames
##' @importFrom lavaan lavInspect
##' @importFrom pbivnorm pbivnorm
##'
##' @param Sigma Population covariance [matrix()], with variable names
##' saved in the [dimnames()] attribute.
##' @param Mu Optional `numeric` vector of population means. If missing,
##' all means will be set to zero.
##' @param thresholds Either a single `numeric` vector of population
##' thresholds used to discretize each normally distributed variable, or a
##' named `list` of each discretized variable's vector of thresholds.
##' The discretized variables may be a subset of all variables in `Sigma`
##' if the remaining variables are intended to be observed rather than latent
##' normally distributed variables.
##' @param cWts Optional (default when missing is to use 0 for the lowest
##' category, followed by successive integers for each higher category).
##' Either a single `numeric` vector of category weights (if they are
##' identical across all variables) or a named `list` of each
##' discretized variable's vector of category weights.
##'
##' @return A `list` including the LRV-scale population moments (means,
##' covariance matrix, correlation matrix, and thresholds), the category
##' weights, a `data.frame` of implied univariate moments (means,
##' *SD*s, skewness, and excess kurtosis (i.e., in excess of 3, which is
##' the kurtosis of the normal distribution) for discretized data treated as
##' `numeric`, and the implied covariance and correlation matrix of
##' discretized data treated as `numeric`.
##'
##' @author
##' Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' Andrew R. Johnson (Curtin University; \email{andrew.johnson@@curtin.edu.au})
##'
##' @references
##'
##' Jorgensen, T. D., & Johnson, A. R. (2022). How to derive expected values of
##' structural equation model parameters when treating discrete data as
##' continuous. *Structural Equation Modeling, 29*(4), 639--650.
##' \doi{10.1080/10705511.2021.1988609}
##'
##' Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor
##' analytic and item response theory models.
##' *Structural Equation Modeling, 15*(1), 136--153.
##' \doi{10.1080/10705510701758406}
##'
##' Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current
##' approaches and future directions. *Psychological Methods, 12*(1),
##' 58--79. \doi{10.1037/1082-989X.12.1.58}
##'
##' @examples
##'
##' ## SCENARIO 1: DIRECTLY SPECIFY POPULATION PARAMETERS
##'
##' ## specify population model in LISREL matrices
##' Nu <- rep(0, 4)
##' Alpha <- c(1, -0.5)
##' Lambda <- matrix(c(1, 1, 0, 0, 0, 0, 1, 1), nrow = 4, ncol = 2,
##' dimnames = list(paste0("y", 1:4), paste0("eta", 1:2)))
##' Psi <- diag(c(1, .75))
##' Theta <- diag(4)
##' Beta <- matrix(c(0, .5, 0, 0), nrow = 2, ncol = 2)
##'
##' ## calculate model-implied population means and covariance matrix
##' ## of latent response variables (LRVs)
##' IB <- solve(diag(2) - Beta) # to save time and space
##' Mu_LRV <- Nu + Lambda %*% IB %*% Alpha
##' Sigma_LRV <- Lambda %*% IB %*% Psi %*% t(IB) %*% t(Lambda) + Theta
##'
##' ## Specify (unstandardized) thresholds to discretize normally distributed data
##' ## generated from Mu_LRV and Sigma_LRV, based on marginal probabilities
##' PiList <- list(y1 = c(.25, .5, .25),
##' y2 = c(.17, .33, .33, .17),
##' y3 = c(.1, .2, .4, .2, .1),
##' ## make final variable highly asymmetric
##' y4 = c(.33, .25, .17, .12, .08, .05))
##' sapply(PiList, sum) # all sum to 100%
##' CumProbs <- sapply(PiList, cumsum)
##' ## unstandardized thresholds
##' TauList <- mapply(qnorm, p = lapply(CumProbs, function(x) x[-length(x)]),
##' m = Mu_LRV, sd = sqrt(diag(Sigma_LRV)))
##' for (i in 1:4) names(TauList[[i]]) <- paste0(names(TauList)[i], "|t",
##' 1:length(TauList[[i]]))
##'
##' ## assign numeric weights to each category (optional, see default)
##' NumCodes <- list(y1 = c(-0.5, 0, 0.5), y2 = 0:3, y3 = 1:5, y4 = 1:6)
##'
##'
##' ## Calculate Population Moments for Numerically Coded Ordinal Variables
##' lrv2ord(Sigma = Sigma_LRV, Mu = Mu_LRV, thresholds = TauList, cWts = NumCodes)
##'
##'
##' ## SCENARIO 2: USE ESTIMATED PARAMETERS AS POPULATION
##'
##' data(datCat) # already stored as c("ordered","factor")
##' fit <- cfa(' f =~ 1*u1 + 1*u2 + 1*u3 + 1*u4 ', data = datCat)
##' lrv2ord(Sigma = fit, thresholds = fit) # use same fit for both
##' ## or use estimated thresholds with specified parameters, but note that
##' ## lrv2ord() will only extract standardized thresholds
##' dimnames(Sigma_LRV) <- list(paste0("u", 1:4), paste0("u", 1:4))
##' lrv2ord(Sigma = cov2cor(Sigma_LRV), thresholds = fit)
##'
##' @export
lrv2ord <- function(Sigma, Mu, thresholds, cWts) {
if (inherits(Sigma, "lavaan")) {
if (lavInspect(Sigma, "ngroups") > 1L || lavInspect(Sigma, "nlevels") > 1L) {
stop('Sigma= only accepts single-group/level lavaan models')
}
fitSigma <- Sigma
Sigma <- lavInspect(fitSigma, "cov.ov")
} else stopifnot(is.matrix(Sigma))
vn <- rownames(Sigma) # variable names
SDs <- sqrt(diag(Sigma))
if (missing(Mu)) {
Mu <- rep(0, nrow(Sigma))
} else if (inherits(Mu, "lavaan")) {
if (lavInspect(Mu, "ngroups") > 1L || lavInspect(Mu, "nlevels") > 1L) {
stop('Mu= only accepts single-group/level lavaan models')
}
fitMu <- Mu
Mu <- lavInspect(fitMu, "mean.ov")
}
names(Mu) <- names(SDs) <- vn
## If a single vector of thresholds is passed, broadcast to a list
if (inherits(thresholds, "lavaan")) {
if (lavInspect(thresholds, "ngroups") > 1L || lavInspect(thresholds, "nlevels") > 1L) {
stop('thresholds= only accepts single-group/level lavaan models')
}
## check whether diag(Sigma) == 1
isSTD <- sapply(SDs, function(x) {
isTRUE(all.equal(x, current = 1, tolerance = .001))
})
if (!all(isSTD)) warning('standardized thresholds= extracted from a ',
'lavaan object, but Sigma= is not a ',
'correlation matrix.')
fitThr <- thresholds
thresholds <- lavInspect(fitThr, "th") # STANDARDIZED thresholds
thresh <- lapply(unique(lavInspect(fitThr, "th.idx")), function(x) {
thresholds[lavInspect(fitThr, "th.idx") == x]
})
names(thresh) <- sapply(thresh, function(x) {
strsplit(names(x)[1], "|t", fixed = TRUE)[[1]][1]
})
} else if (is.atomic(thresholds)) {
thresh <- sapply(vn, function(x) {thresholds}, simplify = FALSE)
} else {
stopifnot(is.list(thresholds)) # must be a list
stopifnot(length(thresholds) <= nrow(Sigma)) # no more than 1 per variable
stopifnot(all(names(thresholds) %in% vn)) # names must match
thresh <- thresholds
}
cn <- names(thresh)
stopifnot(length(cn) > 0L)
## If no category weights are passed, default to 0:nCat
if (missing(cWts)) {
cWts <- sapply(thresh, function(x) { 0:length(x) }, simplify = FALSE)
} else if (is.atomic(cWts)) {
## If a single vector of category weights is passed, broadcast to a list
#FIXME: assumes same number of thresholds across variables
cWts <- sapply(cn, function(x) { cWts }, simplify = FALSE)
} else {
stopifnot(is.list(cWts)) # must be a list
stopifnot(length(cWts) <= nrow(Sigma)) # no more than 1 per variable
stopifnot(all(names(cWts) %in% vn)) # names must match
stopifnot(all(cn %in% names(cWts))) # names must match
cWts <- cWts[cn] # discard any others
}
stopifnot(all((sapply(thresh, length) + 1L) == sapply(cWts, length)))
## Calculate marginal probabilities implied by thresholds on moments
get_marg_probs <- function(threshs, m, sd) {
thr <- c(-Inf, threshs, Inf)
sapply(2:length(thr), function(k) {
pnorm(thr[k], m, sd) - pnorm(thr[k-1], m, sd)
})
}
marginal_probs <- mapply(get_marg_probs, SIMPLIFY = FALSE, threshs = thresh,
m = Mu[cn], sd = SDs[cn])
## Marginal means
Mu_ord <- Mu
Mu_ord[cn] <- mapply(function(p, w) {
stopifnot(length(p) == length(w))
sum(p * w)
}, p = marginal_probs, w = cWts)
## marginal variances (fill in covariances below)
Sigma_ord <- Sigma
if (length(cn) == 1) {
## drop=FALSE is not a solution (yields different error)
Sigma_ord[cn,cn] <- mapply(function(p, w, mu) {
stopifnot(length(p) == length(w))
sum(p * (w - mu)^2)
}, p = marginal_probs, w = cWts, mu = Mu_ord[cn])
} else {
diag(Sigma_ord[cn,cn]) <- mapply(function(p, w, mu) {
stopifnot(length(p) == length(w))
sum(p * (w - mu)^2)
}, p = marginal_probs, w = cWts, mu = Mu_ord[cn])
}
## marginal (standardized) skew
skew_ord <- setNames(rep(0, nrow(Sigma)), nm = vn)
skew_ord[cn] <- mapply(function(p, w, mu) {
stopifnot(length(p) == length(w))
numerator <- sum(p * (w - mu)^3)
Moment2 <- sum(p * (w - mu)^2)
denominator <- sqrt(Moment2)^3
numerator / denominator
}, p = marginal_probs, w = cWts, mu = Mu_ord[cn])
## marginal (standardized, excess) kurtosis
kurt_ord <- setNames(rep(0, nrow(Sigma)), nm = vn)
kurt_ord[cn] <- mapply(function(p, w, mu) {
stopifnot(length(p) == length(w))
numerator <- sum(p * (w - mu)^4)
Moment2 <- sum(p * (w - mu)^2)
denominator <- sqrt(Moment2)^4
numerator / denominator
}, p = marginal_probs, w = cWts, mu = Mu_ord[cn]) - 3 # excess kurtosis
## all marginal descriptives
(margMoments <- data.frame(Mean = Mu_ord, SD = sqrt(diag(Sigma_ord)),
Skew = skew_ord, Kurtosis3 = kurt_ord,
row.names = vn))
class(margMoments) <- c("lavaan.data.frame","data.frame") # for printing
## save old copies to return with new
out <- list(Mu_LRV = Mu, Sigma_LRV = Sigma, R_LRV = stats::cov2cor(Sigma),
Thresholds = thresh, Category_weights = cWts, Uni_ord = margMoments)
class(out$Mu_LRV) <- c("lavaan.vector","numeric")
class(out$Sigma_LRV) <- c("lavaan.matrix.symmetric","matrix")
class(out$R_LRV) <- c("lavaan.matrix.symmetric","matrix")
out$Thresholds <- lapply(out$Thresholds, "class<-",
c("lavaan.vector","numeric"))
out$Category_weights <- lapply(out$Category_weights, "class<-",
c("lavaan.vector","numeric"))
## need bivariate moments?
if (length(vn) == 1L) return(out)
## function to apply to any pair of indicators (i and j) in Sigma
getOrdCov <- function(i, j) {
## to use apply(), i= can be 2 values indicating the [row, column]
if (length(i) > 1L) {
if (!missing(j)) warning("j ignored when i has multiple values")
if (length(i) > 2L) stop("i had ", length(i), " values. Only the first 2 were used.")
j <- i[2]
i <- i[1]
}
## if i/j are numeric, get names
if (is.numeric(i)) i <- vn[i]
if (is.numeric(j)) j <- vn[j]
## make sure thresholds are standardized
# i.thr <-
# j.thr <-
## template for matrices of joint probabilities and cross-products
JointProbs <- CP <- matrix(0, nrow = length(cWts[[i]]),
ncol = length(cWts[[j]]))
i.thr <- c(-1e5, (thresh[[i]] - Mu[i]) / SDs[i], 1e5)
j.thr <- c(-1e5, (thresh[[j]] - Mu[j]) / SDs[j], 1e5)
tCombos <- cbind(expand.grid(i = i.thr, j = j.thr),
expand.grid(cat1 = c(0, seq_along(cWts[[i]])),
cat2 = c(0, seq_along(cWts[[j]]))))
tCombos$cp <- pbivnorm(x = tCombos$i, y = tCombos$j, rho = out$R_LRV[i,j])
## loop over rows & columns
for (RR in seq_along(cWts[[i]])) for (CC in seq_along(cWts[[j]])) {
## calculate joint probabilities
idx1 <- which(tCombos$cat1 == RR & tCombos$cat2 == CC )
idx2 <- which(tCombos$cat1 == RR - 1 & tCombos$cat2 == CC )
idx3 <- which(tCombos$cat1 == RR & tCombos$cat2 == CC - 1)
idx4 <- which(tCombos$cat1 == RR - 1 & tCombos$cat2 == CC - 1)
JointProbs[RR,CC] <- tCombos$cp[idx1] - tCombos$cp[idx2] - tCombos$cp[idx3] + tCombos$cp[idx4]
## calculate cross-products
CP[RR,CC] <- (cWts[[i]][RR] - Mu_ord[i]) * (cWts[[j]][CC] - Mu_ord[j])
}
sum(JointProbs * CP) # return covariance
}
## check whether all variables are being discretized
stayCon <- setdiff(vn, cn)
if (length(stayCon) == 0) {
## all are polychoric
(ij <- which(lower.tri(Sigma_ord), arr.ind = TRUE))
Sigma_ord[ij] <- mapply(getOrdCov, i = ij[,1], j = ij[,2])
Sigma_ord[ ij[,2:1] ] <- Sigma_ord[ij] # copy lower to upper triangle
} else {
## pair by pair, choose polychoric or polyserial
for (i in vn[-length(vn)]) for (j in vn[(which(vn == i)+1):length(vn)]) {
if (i %in% stayCon && j %in% stayCon) next
if (j %in% cn && j %in% cn) {
## both discretized, calculate polychoric
Sigma_ord[i,j] <- Sigma_ord[j,i] <- getOrdCov(i, j)
next
}
## else, calculate polyserial
if (i %in% stayCon) {
CON <- i
CAT <- j
} else {
CAT <- i
CON <- j
}
DENS <- mapply(function(tau, interval, m = 0, sd = 1) {
dnorm(tau, mean = m, sd = sd) * interval
}, tau = thresh[[CAT]], interval = diff(cWts[[CAT]]),
m = Mu[CAT], sd = SDs[CAT])
## Note: polyserial correlation divides by sqrt(diag(Sigma_ord)[CAT]),
## but that cancels out when scaling by both SDs to get covariance
Sigma_ord[CON, CAT] <- Sigma_ord[CAT, CON] <-
out$R_LRV[CON, CAT] * sum(DENS) * sqrt(diag(out$Sigma_LRV)[CON])
}
}
class(Sigma_ord) <- c("lavaan.matrix.symmetric","matrix")
if (nrow(Sigma_ord) > 1L) {
R_ord <- cov2cor(Sigma_ord)
class(R_ord) <- c("lavaan.matrix.symmetric","matrix")
} else R_ord <- NULL
c(out, list(Sigma_ord = Sigma_ord, R_ord = R_ord))
}
|