File: lavaan2emmeans.R

package info (click to toggle)
r-cran-semtools 0.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: makefile: 2
file content (169 lines) | stat: -rw-r--r-- 4,402 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
\dontrun{

  library(lavaan)
  library(emmeans)

  #### Moderation Analysis ####

  mean_sd <- function(x) mean(x) + c(-sd(x), 0, sd(x))

  model <- '
  # regressions
  Sepal.Length ~ b1 * Sepal.Width + b2 * Petal.Length + b3 * Sepal.Width:Petal.Length


  # define mean parameter label for centered math for use in simple slopes
  Sepal.Width ~ Sepal.Width.mean * 1

  # define variance parameter label for centered math for use in simple slopes
  Sepal.Width ~~ Sepal.Width.var * Sepal.Width

  # simple slopes for condition effect
  SD.below := b2 + b3 * (Sepal.Width.mean - sqrt(Sepal.Width.var))
  mean     := b2 + b3 * (Sepal.Width.mean)
  SD.above := b2 + b3 * (Sepal.Width.mean + sqrt(Sepal.Width.var))
  '

  semFit <- sem(model = model,
                data = iris)

  ## Compare simple slopes
  # From `emtrends`
  test(
    emtrends(semFit, ~ Sepal.Width, "Petal.Length",
             lavaan.DV = "Sepal.Length",
             cov.red = mean_sd)
  )

  # From lavaan
  parameterEstimates(semFit, output = "pretty")[13:15, ]
  # Identical slopes.
  # SEs differ due to lavaan estimating uncertainty of the mean / SD
  # of Sepal.Width, whereas emmeans uses the mean+-SD as is (fixed).


  #### Latent DV ####

  model <- '
  LAT1 =~ Sepal.Length + Sepal.Width

  LAT1 ~ b1 * Petal.Width + 1 * Petal.Length

  Petal.Length ~ Petal.Length.mean * 1

  V1 := 1 * Petal.Length.mean + 1 * b1
  V2 := 1 * Petal.Length.mean + 2 * b1
  '

  semFit <- sem(model = model,
                data = iris, std.lv = TRUE)

  ## Compare emmeans
  # From emmeans
  test(
    emmeans(semFit, ~ Petal.Width,
            lavaan.DV = "LAT1",
            at = list(Petal.Width = 1:2))
  )

  # From lavaan
  parameterEstimates(semFit, output = "pretty")[15:16, ]
  # Identical means.
  # SEs differ due to lavaan estimating uncertainty of the mean
  # of Petal.Length, whereas emmeans uses the mean as is.

  #### Multi-Variate DV ####

  model <- '
  ind60 =~ x1 + x2 + x3

  # metric invariance
  dem60 =~ y1 + a*y2 + b*y3 + c*y4
  dem65 =~ y5 + a*y6 + b*y7 + c*y8

  # scalar invariance
  y1 + y5 ~ d*1
  y2 + y6 ~ e*1
  y3 + y7 ~ f*1
  y4 + y8 ~ g*1

  # regressions (slopes differ: interaction with time)
  dem60 ~ b1*ind60
  dem65 ~ b2*ind60 + NA*1 + Mean.Diff*1

  # residual correlations
  y1 ~~ y5
  y2 ~~ y4 + y6
  y3 ~~ y7
  y4 ~~ y8
  y6 ~~ y8

  # conditional mean differences (besides mean(ind60) == 0)
   low := (-1*b2 + Mean.Diff) - (-1*b1) # 1 SD below M
  high := (b2 + Mean.Diff) - b1         # 1 SD above M
'

  semFit <- sem(model, data = PoliticalDemocracy)


  ## Compare contrasts
  # From emmeans
  emmeans(semFit, pairwise ~ rep.meas|ind60,
          lavaan.DV = c("dem60","dem65"),
          at = list(ind60 = c(-1,1)))[[2]]

  # From lavaan
  parameterEstimates(semFit, output = "pretty")[49:50, ]


  #### Multi Group ####

  model <- 'x1 ~ c(int1, int2)*1 + c(b1, b2)*ageyr
  diff_11 := (int2 + b2*11) - (int1 + b1*11)
  diff_13 := (int2 + b2*13) - (int1 + b1*13)
  diff_15 := (int2 + b2*15) - (int1 + b1*15)
'
  semFit <- sem(model, group = "school", data = HolzingerSwineford1939)


  ## Compare contrasts
  # From emmeans (note `nesting = NULL`)
  emmeans(semFit, pairwise ~ school | ageyr, lavaan.DV = "x1",
          at = list(ageyr = c(11, 13, 15)), nesting = NULL)[[2]]

  # From lavaan
  parameterEstimates(semFit, output = "pretty")

  #### Dealing with factors ####

  warpbreaks <- cbind(warpbreaks,
                      model.matrix(~ wool + tension, data = warpbreaks))

  model <- "
  # Split for convenience
  breaks ~ 1
  breaks ~ woolB
  breaks ~ tensionM + tensionH
  breaks ~ woolB:tensionM + woolB:tensionH
  "

  semFit <- sem(model, warpbreaks)

  ## Compare contrasts
  # From lm -> emmeans
  lmFit <- lm(breaks ~ wool * tension, data = warpbreaks)
  lmEM <- emmeans(lmFit, ~ tension + wool)
  contrast(lmEM, method = data.frame(L_all = c(-1, .05, 0.5),
                                     M_H   = c(0, 1, -1)), by = "wool")

  # From lavaan -> emmeans
  lavEM <- emmeans(semFit, ~ tensionM + tensionH + woolB,
                   lavaan.DV = "breaks")
  contrast(lavEM,
           method = list(
             "L_all|A" = c(c(-1, .05, 0.5, 0), rep(0, 4)),
             "M_H  |A" = c(c(0, 1, -1, 0),     rep(0, 4)),
             "L_all|A" = c(rep(0, 4),          c(-1, .05, 0.5, 0)),
             "M_H  |A" = c(rep(0, 4),          c(0, 1, -1, 0))
           ))
}