1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
\dontrun{
library(lavaan)
library(emmeans)
#### Moderation Analysis ####
mean_sd <- function(x) mean(x) + c(-sd(x), 0, sd(x))
model <- '
# regressions
Sepal.Length ~ b1 * Sepal.Width + b2 * Petal.Length + b3 * Sepal.Width:Petal.Length
# define mean parameter label for centered math for use in simple slopes
Sepal.Width ~ Sepal.Width.mean * 1
# define variance parameter label for centered math for use in simple slopes
Sepal.Width ~~ Sepal.Width.var * Sepal.Width
# simple slopes for condition effect
SD.below := b2 + b3 * (Sepal.Width.mean - sqrt(Sepal.Width.var))
mean := b2 + b3 * (Sepal.Width.mean)
SD.above := b2 + b3 * (Sepal.Width.mean + sqrt(Sepal.Width.var))
'
semFit <- sem(model = model,
data = iris)
## Compare simple slopes
# From `emtrends`
test(
emtrends(semFit, ~ Sepal.Width, "Petal.Length",
lavaan.DV = "Sepal.Length",
cov.red = mean_sd)
)
# From lavaan
parameterEstimates(semFit, output = "pretty")[13:15, ]
# Identical slopes.
# SEs differ due to lavaan estimating uncertainty of the mean / SD
# of Sepal.Width, whereas emmeans uses the mean+-SD as is (fixed).
#### Latent DV ####
model <- '
LAT1 =~ Sepal.Length + Sepal.Width
LAT1 ~ b1 * Petal.Width + 1 * Petal.Length
Petal.Length ~ Petal.Length.mean * 1
V1 := 1 * Petal.Length.mean + 1 * b1
V2 := 1 * Petal.Length.mean + 2 * b1
'
semFit <- sem(model = model,
data = iris, std.lv = TRUE)
## Compare emmeans
# From emmeans
test(
emmeans(semFit, ~ Petal.Width,
lavaan.DV = "LAT1",
at = list(Petal.Width = 1:2))
)
# From lavaan
parameterEstimates(semFit, output = "pretty")[15:16, ]
# Identical means.
# SEs differ due to lavaan estimating uncertainty of the mean
# of Petal.Length, whereas emmeans uses the mean as is.
#### Multi-Variate DV ####
model <- '
ind60 =~ x1 + x2 + x3
# metric invariance
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# scalar invariance
y1 + y5 ~ d*1
y2 + y6 ~ e*1
y3 + y7 ~ f*1
y4 + y8 ~ g*1
# regressions (slopes differ: interaction with time)
dem60 ~ b1*ind60
dem65 ~ b2*ind60 + NA*1 + Mean.Diff*1
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
# conditional mean differences (besides mean(ind60) == 0)
low := (-1*b2 + Mean.Diff) - (-1*b1) # 1 SD below M
high := (b2 + Mean.Diff) - b1 # 1 SD above M
'
semFit <- sem(model, data = PoliticalDemocracy)
## Compare contrasts
# From emmeans
emmeans(semFit, pairwise ~ rep.meas|ind60,
lavaan.DV = c("dem60","dem65"),
at = list(ind60 = c(-1,1)))[[2]]
# From lavaan
parameterEstimates(semFit, output = "pretty")[49:50, ]
#### Multi Group ####
model <- 'x1 ~ c(int1, int2)*1 + c(b1, b2)*ageyr
diff_11 := (int2 + b2*11) - (int1 + b1*11)
diff_13 := (int2 + b2*13) - (int1 + b1*13)
diff_15 := (int2 + b2*15) - (int1 + b1*15)
'
semFit <- sem(model, group = "school", data = HolzingerSwineford1939)
## Compare contrasts
# From emmeans (note `nesting = NULL`)
emmeans(semFit, pairwise ~ school | ageyr, lavaan.DV = "x1",
at = list(ageyr = c(11, 13, 15)), nesting = NULL)[[2]]
# From lavaan
parameterEstimates(semFit, output = "pretty")
#### Dealing with factors ####
warpbreaks <- cbind(warpbreaks,
model.matrix(~ wool + tension, data = warpbreaks))
model <- "
# Split for convenience
breaks ~ 1
breaks ~ woolB
breaks ~ tensionM + tensionH
breaks ~ woolB:tensionM + woolB:tensionH
"
semFit <- sem(model, warpbreaks)
## Compare contrasts
# From lm -> emmeans
lmFit <- lm(breaks ~ wool * tension, data = warpbreaks)
lmEM <- emmeans(lmFit, ~ tension + wool)
contrast(lmEM, method = data.frame(L_all = c(-1, .05, 0.5),
M_H = c(0, 1, -1)), by = "wool")
# From lavaan -> emmeans
lavEM <- emmeans(semFit, ~ tensionM + tensionH + woolB,
lavaan.DV = "breaks")
contrast(lavEM,
method = list(
"L_all|A" = c(c(-1, .05, 0.5, 0), rep(0, 4)),
"M_H |A" = c(c(0, 1, -1, 0), rep(0, 4)),
"L_all|A" = c(rep(0, 4), c(-1, .05, 0.5, 0)),
"M_H |A" = c(rep(0, 4), c(0, 1, -1, 0))
))
}
|