1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/runMI.R
\name{calculate.D2-deprecated}
\alias{calculate.D2-deprecated}
\title{Calculate the "D2" statistic}
\usage{
calculate.D2(w, DF = 0L, asymptotic = FALSE)
}
\arguments{
\item{w}{\code{numeric} vector of Wald \eqn{\chi^2} statistics. Can also
be Wald \emph{z} statistics, which will be internally squared to make
\eqn{\chi^2} statistics with one \emph{df} (must set \code{DF = 0L}).}
\item{DF}{degrees of freedom (\emph{df}) of the \eqn{\chi^2} statistics.
If \code{DF = 0L} (default), \code{w} is assumed to contain \emph{z}
statistics, which will be internally squared.}
\item{asymptotic}{\code{logical}. If \code{FALSE} (default), the pooled test
will be returned as an \emph{F}-distributed statistic with numerator
(\code{df1}) and denominator (\code{df2}) degrees of freedom.
If \code{TRUE}, the pooled \emph{F} statistic will be multiplied by its
\code{df1} on the assumption that its \code{df2} is sufficiently large
enough that the statistic will be asymptotically \eqn{\chi^2} distributed
with \code{df1}.}
}
\value{
A \code{numeric} vector containing the test statistic, \emph{df},
its \emph{p} value, and 2 missing-data diagnostics: the relative invrease
in variance (RIV, or average for multiparameter tests: ARIV) and the
fraction missing information (FMI = ARIV / (1 + ARIV)).
}
\description{
This is a utility function used to calculate the "D2" statistic for pooling
test statistics across multiple imputations. This function is called by
several functions used for \linkS4class{OLDlavaan.mi} objects, such as
\code{\link[=lavTestLRT.mi]{lavTestLRT.mi()}}, \code{\link[=lavTestWald.mi]{lavTestWald.mi()}}, and
\code{\link[=lavTestScore.mi]{lavTestScore.mi()}}. But this function can be used for any general
scenario because it only requires a vector of \eqn{\chi^2} statistics (one
from each imputation) and the degrees of freedom for the test statistic.
See Li, Meng, Raghunathan, & Rubin (1991) and Enders (2010, chapter 8) for
details about how it is calculated.
}
\examples{
## generate a vector of chi-squared values, just for example
DF <- 3 # degrees of freedom
M <- 20 # number of imputations
CHI <- rchisq(M, DF)
## pool the "results"
calculate.D2(CHI, DF) # by default, an F statistic is returned
calculate.D2(CHI, DF, asymptotic = TRUE) # asymptotically chi-squared
## generate standard-normal values, for an example of Wald z tests
Z <- rnorm(M)
calculate.D2(Z) # default DF = 0 will square Z to make chisq(DF = 1)
## F test is equivalent to a t test with the denominator DF
}
\references{
Enders, C. K. (2010). \emph{Applied missing data analysis}. New
York, NY: Guilford.
Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991).
Significance levels from repeated \emph{p}-values with multiply-imputed
data. \emph{Statistica Sinica, 1}(1), 65--92. Retrieved from
\url{https://www.jstor.org/stable/24303994}
}
\seealso{
\code{\link[=lavTestLRT.mi]{lavTestLRT.mi()}}, \code{\link[=lavTestWald.mi]{lavTestWald.mi()}}, \code{\link[=lavTestScore.mi]{lavTestScore.mi()}}
\code{\link[=semTools-deprecated]{semTools-deprecated()}}
}
\author{
Terrence D. Jorgensen (University of Amsterdam;
\email{TJorgensen314@gmail.com})
}
\keyword{internal}
|