File: calculate.D2-deprecated.Rd

package info (click to toggle)
r-cran-semtools 0.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: makefile: 2
file content (77 lines) | stat: -rw-r--r-- 3,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/runMI.R
\name{calculate.D2-deprecated}
\alias{calculate.D2-deprecated}
\title{Calculate the "D2" statistic}
\usage{
calculate.D2(w, DF = 0L, asymptotic = FALSE)
}
\arguments{
\item{w}{\code{numeric} vector of Wald \eqn{\chi^2} statistics. Can also
be Wald \emph{z} statistics, which will be internally squared to make
\eqn{\chi^2} statistics with one \emph{df} (must set \code{DF = 0L}).}

\item{DF}{degrees of freedom (\emph{df}) of the \eqn{\chi^2} statistics.
If \code{DF = 0L} (default), \code{w} is assumed to contain \emph{z}
statistics, which will be internally squared.}

\item{asymptotic}{\code{logical}. If \code{FALSE} (default), the pooled test
will be returned as an \emph{F}-distributed statistic with numerator
(\code{df1}) and denominator (\code{df2}) degrees of freedom.
If \code{TRUE}, the pooled \emph{F} statistic will be multiplied by its
\code{df1} on the assumption that its \code{df2} is sufficiently large
enough that the statistic will be asymptotically \eqn{\chi^2} distributed
with \code{df1}.}
}
\value{
A \code{numeric} vector containing the test statistic, \emph{df},
its \emph{p} value, and 2 missing-data diagnostics: the relative invrease
in variance (RIV, or average for multiparameter tests: ARIV) and the
fraction missing information (FMI = ARIV / (1 + ARIV)).
}
\description{
This is a utility function used to calculate the "D2" statistic for pooling
test statistics across multiple imputations. This function is called by
several functions used for \linkS4class{OLDlavaan.mi} objects, such as
\code{\link[=lavTestLRT.mi]{lavTestLRT.mi()}}, \code{\link[=lavTestWald.mi]{lavTestWald.mi()}}, and
\code{\link[=lavTestScore.mi]{lavTestScore.mi()}}. But this function can be used for any general
scenario because it only requires a vector of \eqn{\chi^2} statistics (one
from each imputation) and the degrees of freedom for the test statistic.
See Li, Meng, Raghunathan, & Rubin (1991) and Enders (2010, chapter 8) for
details about how it is calculated.
}
\examples{
## generate a vector of chi-squared values, just for example
DF <- 3 # degrees of freedom
M <- 20 # number of imputations
CHI <- rchisq(M, DF)

## pool the "results"
calculate.D2(CHI, DF) # by default, an F statistic is returned
calculate.D2(CHI, DF, asymptotic = TRUE) # asymptotically chi-squared

## generate standard-normal values, for an example of Wald z tests
Z <- rnorm(M)
calculate.D2(Z) # default DF = 0 will square Z to make chisq(DF = 1)
## F test is equivalent to a t test with the denominator DF

}
\references{
Enders, C. K. (2010). \emph{Applied missing data analysis}. New
York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991).
Significance levels from repeated \emph{p}-values with multiply-imputed
data. \emph{Statistica Sinica, 1}(1), 65--92. Retrieved from
\url{https://www.jstor.org/stable/24303994}
}
\seealso{
\code{\link[=lavTestLRT.mi]{lavTestLRT.mi()}}, \code{\link[=lavTestWald.mi]{lavTestWald.mi()}}, \code{\link[=lavTestScore.mi]{lavTestScore.mi()}}

\code{\link[=semTools-deprecated]{semTools-deprecated()}}
}
\author{
Terrence D. Jorgensen (University of Amsterdam;
\email{TJorgensen314@gmail.com})
}
\keyword{internal}