File: findRMSEAsamplesize.Rd

package info (click to toggle)
r-cran-semtools 0.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: makefile: 2
file content (63 lines) | stat: -rw-r--r-- 2,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/powerAnalysisRMSEA.R
\name{findRMSEAsamplesize}
\alias{findRMSEAsamplesize}
\title{Find the minimum sample size for a given statistical power based on
population RMSEA}
\usage{
findRMSEAsamplesize(rmsea0, rmseaA, df, power = 0.8, alpha = 0.05,
  group = 1)
}
\arguments{
\item{rmsea0}{Null RMSEA}

\item{rmseaA}{Alternative RMSEA}

\item{df}{Model degrees of freedom}

\item{power}{Desired statistical power to reject misspecified model (test of
close fit) or retain good model (test of not-close fit)}

\item{alpha}{Alpha level used in power calculations}

\item{group}{The number of group that is used to calculate RMSEA.}
}
\description{
Find the minimum sample size for a specified statistical power based on
population RMSEA. This function can be applied for both test of close fit
and test of not-close fit (MacCallum, Browne, & Suguwara, 1996)
}
\details{
This function find the minimum sample size for a specified power based on an
iterative routine. The sample size keep increasing until the calculated
power from \code{\link[=findRMSEApower]{findRMSEApower()}} function is just over the specified
power. If \code{group} is greater than 1, the resulting sample size is the
sample size per group.
}
\examples{

findRMSEAsamplesize(rmsea0 = .05, rmseaA = .08, df = 20, power = 0.80)

}
\references{
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis
and determination of sample size for covariance structure modeling.
\emph{Psychological Methods, 1}(2), 130--149. \doi{10.1037/1082-989X.1.2.130}

Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L.
(2021). Analytical power calculations for structural equation modeling:
A tutorial and Shiny app. \emph{Behavior Research Methods, 53}, 1385--1406.
\doi{10.3758/s13428-020-01479-0}
}
\seealso{
\itemize{
\item \code{\link[=plotRMSEApower]{plotRMSEApower()}} to plot the statistical power based on
population RMSEA given the sample size
\item \code{\link[=plotRMSEAdist]{plotRMSEAdist()}} to visualize the RMSEA distributions
\item \code{\link[=findRMSEApower]{findRMSEApower()}} to find the statistical power based on
population RMSEA given a sample size
}
}
\author{
Sunthud Pornprasertmanit (\email{psunthud@gmail.com})
}