File: htmt.Rd

package info (click to toggle)
r-cran-semtools 0.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: makefile: 2
file content (93 lines) | stat: -rw-r--r-- 4,093 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/htmt.R
\name{htmt}
\alias{htmt}
\title{Assessing Discriminant Validity using Heterotrait--Monotrait Ratio}
\usage{
htmt(model, data = NULL, sample.cov = NULL, missing = "listwise",
  ordered = NULL, absolute = TRUE, htmt2 = TRUE)
}
\arguments{
\item{model}{lavaan \code{\link[lavaan:model.syntax]{lavaan::model.syntax()}} of a confirmatory factor
analysis model where at least two factors are required for indicators
measuring the same construct.}

\item{data}{A \code{data.frame} or data \code{matrix}}

\item{sample.cov}{A covariance or correlation matrix can be used, instead of
\verb{data=}, to estimate the HTMT values.}

\item{missing}{If \code{"listwise"}, cases with missing values are removed listwise
from the data frame. If \code{"direct"} or \code{"ml"} or \code{"fiml"} and the estimator is
maximum likelihood, an EM algorithm is used to estimate the unrestricted
covariance matrix (and mean vector). If \code{"pairwise"}, pairwise deletion is
used. If \code{"default"}, the value is set depending on the estimator and the
mimic option (see details in \code{\link[lavaan:lavCor]{lavaan::lavCor()}}).}

\item{ordered}{Character vector. Only used if object is a \code{data.frame}.
Treat these variables as ordered (ordinal) variables. Importantly, all
other variables will be treated as numeric (unless \code{is.ordered} in
\verb{data=}). See also \code{\link[lavaan:lavCor]{lavaan::lavCor()}}.}

\item{absolute}{\code{logical} indicating whether HTMT values should be
estimated based on absolute correlations (default is \code{TRUE}). This
is recommended for HTMT but required for HTMT2 (so silently ignored).}

\item{htmt2}{\code{logical} indicating whether to use the geometric mean
(default, appropriate for congeneric indicators) or arithmetic mean
(which assumes tau-equivalence).}
}
\value{
A matrix showing HTMT(2) values (i.e., discriminant validity)
between each pair of factors.
}
\description{
This function assesses discriminant validity through the
heterotrait-monotrait ratio (HTMT) of the correlations (Henseler, Ringlet &
Sarstedt, 2015). Specifically, it assesses the arithmetic (Henseler et al.,
) or geometric (Roemer et al., 2021) mean correlation
among indicators across constructs (i.e. heterotrait--heteromethod
correlations) relative to the geometric-mean correlation among indicators
within the same construct (i.e. monotrait--heteromethod correlations).
The resulting HTMT(2) values are interpreted as estimates of inter-construct
correlations. Absolute values of the correlations are recommended to
calculate the HTMT matrix, and are required to calculate HTMT2. Correlations
are estimated using the \code{\link[lavaan:lavCor]{lavaan::lavCor()}} function.
}
\examples{

HS.model <- ' visual  =~ x1 + x2 + x3
              textual =~ x4 + x5 + x6
              speed   =~ x7 + x8 + x9 '

dat <- HolzingerSwineford1939[, paste0("x", 1:9)]
htmt(HS.model, dat)

## save covariance matrix
HS.cov <- cov(HolzingerSwineford1939[, paste0("x", 1:9)])
## HTMT using arithmetic mean
htmt(HS.model, sample.cov = HS.cov, htmt2 = FALSE)

}
\references{
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for
assessing discriminant validity in variance-based structural equation
modeling. \emph{Journal of the Academy of Marketing Science, 43}(1),
115--135. \doi{10.1007/s11747-014-0403-8}

Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2---An improved
criterion for assessing discriminant validity in structural equation
modeling. \emph{Industrial Management & Data Systems, 121}(21), 2637--2650.
\doi{10.1108/IMDS-02-2021-0082}

Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016).
Discriminant validity testing in marketing: An analysis, causes for
concern, and proposed remedies.
\emph{Journal of the Academy of Marketing Science, 44}(1), 119--134.
\doi{10.1007/s11747-015-0455-4}
}
\author{
Ylenio Longo (University of Nottingham; \email{yleniolongo@gmail.com})

Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@gmail.com})
}