1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/indProd.R
\name{indProd}
\alias{indProd}
\alias{orthogonalize}
\title{Make products of indicators using no centering, mean centering, double-mean
centering, or residual centering}
\usage{
indProd(data, var1, var2, var3 = NULL, match = TRUE, meanC = TRUE,
residualC = FALSE, doubleMC = TRUE, namesProd = NULL)
orthogonalize(data, var1, var2, var3 = NULL, match = TRUE,
namesProd = NULL)
}
\arguments{
\item{data}{The desired data to be transformed.}
\item{var1}{Names or indices of the variables loaded on the first factor}
\item{var2}{Names or indices of the variables loaded on the second factor}
\item{var3}{Names or indices of the variables loaded on the third factor
(for three-way interaction)}
\item{match}{Specify \code{TRUE} to use match-paired approach (Marsh, Wen, &
Hau, 2004). If \code{FALSE}, the resulting products are all possible
products.}
\item{meanC}{Specify \code{TRUE} for mean centering the main effect
indicator before making the products}
\item{residualC}{Specify \code{TRUE} for residual centering the products by
the main effect indicators (Little, Bovaird, & Widaman, 2006).}
\item{doubleMC}{Specify \code{TRUE} for centering the resulting products
(Lin et. al., 2010)}
\item{namesProd}{The names of resulting products}
}
\value{
The original data attached with the products.
}
\description{
The \code{indProd} function will make products of indicators using no
centering, mean centering, double-mean centering, or residual centering. The
\code{orthogonalize} function is the shortcut of the \code{indProd} function
to make the residual-centered indicators products.
}
\examples{
## Mean centering / two-way interaction / match-paired
dat <- indProd(attitude[ , -1], var1 = 1:3, var2 = 4:6)
## Residual centering / two-way interaction / match-paired
dat2 <- indProd(attitude[ , -1], var1 = 1:3, var2 = 4:6, match = FALSE,
meanC = FALSE, residualC = TRUE, doubleMC = FALSE)
## Double-mean centering / two-way interaction / match-paired
dat3 <- indProd(attitude[ , -1], var1 = 1:3, var2 = 4:6, match = FALSE,
meanC = TRUE, residualC = FALSE, doubleMC = TRUE)
## Mean centering / three-way interaction / match-paired
dat4 <- indProd(attitude[ , -1], var1 = 1:2, var2 = 3:4, var3 = 5:6)
## Residual centering / three-way interaction / match-paired
dat5 <- orthogonalize(attitude[ , -1], var1 = 1:2, var2 = 3:4, var3 = 5:6,
match = FALSE)
## Double-mean centering / three-way interaction / match-paired
dat6 <- indProd(attitude[ , -1], var1 = 1:2, var2 = 3:4, var3 = 5:6,
match = FALSE, meanC = TRUE, residualC = TRUE,
doubleMC = TRUE)
## To add product-indicators to multiple-imputed data sets
\donttest{
HSMiss <- HolzingerSwineford1939[ , c(paste0("x", 1:9), "ageyr","agemo")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 3, p2s = FALSE)
imps <- HS.amelia$imputations # extract a list of imputations
## apply indProd() to the list of data.frames
imps2 <- lapply(imps, indProd,
var1 = c("x1","x2","x3"), var2 = c("x4","x5","x6"))
## verify:
lapply(imps2, head)
}
}
\references{
Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation
models of latent interactions: Evaluation of alternative estimation
strategies and indicator construction. \emph{Psychological Methods, 9}(3),
275--300. \doi{10.1037/1082-989X.9.3.275}
Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation
models of latent interactions: Clarification of orthogonalizing and
double-mean-centering strategies. \emph{Structural Equation Modeling, 17}(3),
374--391. \doi{10.1080/10705511.2010.488999}
Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of
orthogonalizing powered and product terms: Implications for modeling
interactions among latent variables. \emph{Structural Equation Modeling,
13}(4), 497--519. \doi{10.1207/s15328007sem1304_1}
}
\seealso{
\itemize{ \item \code{\link[=probe2WayMC]{probe2WayMC()}} For probing the two-way
latent interaction when the results are obtained from mean-centering, or
double-mean centering. \item \code{\link[=probe3WayMC]{probe3WayMC()}} For probing the
three-way latent interaction when the results are obtained from
mean-centering, or double-mean centering. \item \code{\link[=probe2WayRC]{probe2WayRC()}}
For probing the two-way latent interaction when the results are obtained
from residual-centering approach. \item \code{\link[=probe3WayRC]{probe3WayRC()}} For
probing the two-way latent interaction when the results are obtained from
residual-centering approach. \item \code{\link[=plotProbe]{plotProbe()}} Plot the simple
intercepts and slopes of the latent interaction. }
}
\author{
Sunthud Pornprasertmanit (\email{psunthud@gmail.com}) Alexander
Schoemann (East Carolina University; \email{schoemanna@ecu.edu})
}
|