1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/measEq.R
\name{measEq.syntax}
\alias{measEq.syntax}
\title{Syntax for measurement equivalence}
\usage{
measEq.syntax(configural.model, ..., ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016", ID.thr = c(1L, 2L), group = NULL,
group.equal = "", group.partial = "", longFacNames = list(),
longIndNames = list(), long.equal = "", long.partial = "",
auto = "all", warn = TRUE, debug = FALSE, return.fit = FALSE)
}
\arguments{
\item{configural.model}{A model with no measurement-invariance constraints
(i.e., representing only configural invariance), unless required for model
identification. \code{configural.model} can be either:
\itemize{
\item \code{\link[lavaan:model.syntax]{lavaan::model.syntax()}} or a \code{\link[lavaan:parTable]{lavaan::parTable()}} specifying the
configural model. Using this option, the user can also provide
either raw \code{data} or summary statistics via \code{sample.cov}
and (optionally) \code{sample.mean}. See argument descriptions in
\code{\link[lavaan:lavaan]{lavaan::lavaan()}}. In order to include thresholds in
the generated syntax, either users must provide raw \code{data},
or the \code{configural.model} syntax must specify all thresholds
(see first example). If raw \code{data} are not provided, the
number of blocks (groups, levels, or combination) must be
indicated using an arbitrary \code{sample.nobs} argument (e.g.,
3 groups could be specified using \code{sample.nobs=rep(1, 3)}).
\item a fitted \link[lavaan:lavaan-class]{lavaan::lavaan} model (e.g., as returned by
\code{\link[lavaan:cfa]{lavaan::cfa()}}) estimating the configural model
}
Note that the specified or fitted model must not contain any latent
structural parameters (i.e., it must be a CFA model), unless they are
higher-order constructs with latent indicators (i.e., a second-order CFA).}
\item{...}{Additional arguments (e.g., \code{data}, \code{ordered}, or
\code{parameterization}) passed to the \code{\link[lavaan:lavaan]{lavaan::lavaan()}}
function. See also \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}.}
\item{ID.fac}{\code{character}. The method for identifying common-factor
variances and (if \code{meanstructure = TRUE}) means. Three methods are
available, which go by different names in the literature:
\itemize{
\item Standardize the common factor (mean = 0, \emph{SD} = 1) by
specifying any of: \code{"std.lv"}, \code{"unit.variance"},
\code{"UV"}, \code{"fixed.factor"},
\code{"fixed-factor"}
\item Choose a reference indicator by specifying any of:
\code{"auto.fix.first"}, \code{"unit.loading"}, \code{"UL"},
\code{"marker"}, \code{"ref"}, \code{"ref.indicator"},
\code{"reference.indicator"}, \code{"reference-indicator"},
\code{"marker.variable"}, \code{"marker-variable"}
\item Apply effects-code constraints to loadings and intercepts by
specifying any of: \code{"FX"}, \code{"EC"}, \code{"effects"},
\code{"effects.coding"}, \code{"effects-coding"},
\code{"effects.code"}, \code{"effects-code"}
}
See Kloessner & Klopp (2019) for details about all three methods.}
\item{ID.cat}{\code{character}. The method for identifying (residual)
variances and intercepts of latent item-responses underlying any
\code{ordered} indicators. Four methods are available:
\itemize{
\item To follow Wu & Estabrook's (2016) guidelines (default), specify
any of: \code{"Wu.Estabrook.2016"}, \code{"Wu.2016"},
\code{"Wu.Estabrook"}, \code{"Wu"}, \code{"Wu2016"}. For
consistency, specify \code{ID.fac = "std.lv"}.
\item To use the default settings of M\emph{plus} and \code{lavaan},
specify any of: \code{"default"}, \code{"Mplus"}, \code{"Muthen"}.
Details provided in Millsap & Tein (2004).
\item To use the constraints recommended by Millsap & Tein (2004; see
also Liu et al., 2017, for the longitudinal case)
specify any of: \code{"millsap"}, \code{"millsap.2004"},
\code{"millsap.tein.2004"}. For consistency, specify
\code{ID.fac = "marker"} and \code{parameterization = "theta"}.
\item To use the default settings of LISREL, specify \code{"LISREL"}
or \code{"Joreskog"}. Details provided in Millsap & Tein (2004).
For consistency, specify \code{parameterization = "theta"}.
}
See \strong{Details} and \strong{References} for more information.}
\item{ID.thr}{\code{integer}. Only relevant when
\code{ID.cat = "Millsap.Tein.2004"}. Used to indicate which thresholds
should be constrained for identification. The first integer indicates the
threshold used for all indicators, the second integer indicates the
additional threshold constrained for a reference indicator (ignored if
binary).}
\item{group}{optional \code{character} indicating the name of a grouping
variable. See \code{\link[lavaan:cfa]{lavaan::cfa()}}.}
\item{group.equal}{optional \code{character} vector indicating type(s) of
parameter to equate across groups. Ignored if \code{is.null(group)}.
See \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}.}
\item{group.partial}{optional \code{character} vector or a parameter table
indicating exceptions to \code{group.equal} (see
\code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}). Any variables not appearing in the
\code{configural.model} will be ignored, and any parameter constraints
needed for identification (e.g., two thresholds per indicator when
\code{ID.cat = "Millsap"}) will be removed.}
\item{longFacNames}{optional named \code{list} of \code{character} vectors,
each indicating multiple factors in the model that are actually the same
construct measured repeatedly. See \strong{Details} and \strong{Examples}.}
\item{longIndNames}{optional named \code{list} of \code{character} vectors,
each indicating multiple indicators in the model that are actually the
same indicator measured repeatedly. See \strong{Details} and
\strong{Examples}.}
\item{long.equal}{optional \code{character} vector indicating type(s) of
parameter to equate across repeated measures. Ignored if no factors are
indicated as repeatedly measured in \code{longFacNames}.}
\item{long.partial}{optional \code{character} vector or a parameter table
indicating exceptions to \code{long.equal}. Any longitudinal variable
names not appearing in \code{names(longFacNames)} or
\code{names(longIndNames)} will be ignored, and any parameter constraints
needed for identification will be removed.}
\item{auto}{Used to automatically included autocorrelated measurement errors
among repeatedly measured indicators in \code{longIndNames}. Specify a
single \code{integer} to set the maximum order (e.g., \code{auto = 1L}
indicates that an indicator's unique factors should only be correlated
between adjacently measured occasions). \code{auto = TRUE} or \code{"all"}
will specify residual covariances among all possible lags per repeatedly
measured indicator in \code{longIndNames}.}
\item{warn, debug}{\code{logical}. Passed to \code{\link[lavaan:lavaan]{lavaan::lavaan()}}
and \code{\link[lavaan:model.syntax]{lavaan::lavParseModelString()}}.
See \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}.}
\item{return.fit}{\code{logical} indicating whether the generated syntax
should be fitted to the provided \code{data} (or summary statistics, if
provided via \code{sample.cov}). If \code{configural.model} is a fitted
lavaan model, the generated syntax will be fitted using the \code{update}
method (see \link[lavaan:lavaan-class]{lavaan::lavaan}), and \dots will be passed to
\code{\link[lavaan:lavaan]{lavaan::lavaan()}}. If neither data nor a fitted lavaan model
were provided, this must be \code{FALSE}. If \code{TRUE}, the generated
\code{measEq.syntax} object will be included in the \code{lavaan} object's
\verb{@external} slot, accessible by \code{fit@external$measEq.syntax}.}
}
\value{
By default, an object of class \linkS4class{measEq.syntax}.
If \code{return.fit = TRUE}, a fitted \code{\link[lavaan:lavaan]{lavaan::lavaan()}}
model, with the \code{measEq.syntax} object stored in the
\verb{@external} slot, accessible by \code{fit@external$measEq.syntax}.
}
\description{
Automatically generates \code{lavaan} model syntax to specify a confirmatory
factor analysis (CFA) model with equality constraints imposed on
user-specified measurement (or structural) parameters. Optionally returns
the fitted model (if data are provided) representing some chosen level of
measurement equivalence/invariance across groups and/or repeated measures.
}
\details{
This function is a pedagogical and analytical tool to generate model syntax
representing some level of measurement equivalence/invariance across any
combination of multiple groups and/or repeated measures. Support is provided
for confirmatory factor analysis (CFA) models with simple or complex
structure (i.e., cross-loadings and correlated residuals are allowed).
For any complexities that exceed the limits of automation, this function is
intended to still be useful by providing a means to generate syntax that
users can easily edit to accommodate their unique situations.
Limited support is provided for bifactor models and higher-order constructs.
Because bifactor models have cross-loadings by definition, the option
\code{ID.fac = "effects.code"} is unavailable. \code{ID.fac = "UV"} is
recommended for bifactor models, but \code{ID.fac = "UL"} is available on
the condition that each factor has a unique first indicator in the
\code{configural.model}. In order to maintain generality, higher-order
factors may include a mix of manifest and latent indicators, but they must
therefore require \code{ID.fac = "UL"} to avoid complications with
differentiating lower-order vs. higher-order (or mixed-level) factors.
The keyword \code{"loadings"} in \code{group.equal} or \code{long.equal}
constrains factor loadings of all manifest indicators (including loadings on
higher-order factors that also have latent indicators), whereas the keyword
\code{"regressions"} constrains factor loadings of latent indicators. Users
can edit the model syntax manually to adjust constraints as necessary, or
clever use of the \code{group.partial} or \code{long.partial} arguments
could make it possible for users to still automated their model syntax.
The keyword \code{"intercepts"} constrains the intercepts of all manifest
indicators, and the keyword \code{"means"} constrains intercepts and means
of all latent common factors, regardless of whether they are latent
indicators of higher-order factors. To test equivalence of lower-order and
higher-order intercepts/means in separate steps, the user can either
manually edit their generated syntax or conscientiously exploit the
\code{group.partial} or \code{long.partial} arguments as necessary.
\strong{\code{ID.fac}:} If the \code{configural.model} fixes any (e.g.,
the first) factor loadings, the generated syntax object will retain those
fixed values. This allows the user to retain additional constraints that
might be necessary (e.g., if there are only 1 or 2 indicators). Some methods
must be used in conjunction with other settings:
\itemize{
\item \code{ID.cat = "Millsap"} requires \code{ID.fac = "UL"} and
\code{parameterization = "theta"}.
\item \code{ID.cat = "LISREL"} requires \code{parameterization = "theta"}.
\item \code{ID.fac = "effects.code"} is unavailable when there are any
cross-loadings.
}
\strong{\code{ID.cat}:} Wu & Estabrook (2016) recommended constraining
thresholds to equality first, and doing so should allow releasing any
identification constraints no longer needed. For each \code{ordered}
indicator, constraining one threshold to equality will allow the item's
intercepts to be estimated in all but the first group or repeated measure.
Constraining a second threshold (if applicable) will allow the item's
(residual) variance to be estimated in all but the first group or repeated
measure. For binary data, there is no independent test of threshold,
intercept, or residual-variance equality. Equivalence of thresholds must
also be assumed for three-category indicators. These guidelines provide the
least restrictive assumptions and tests, and are therefore the default.
The default setting in M\emph{plus} is similar to Wu & Estabrook (2016),
except that intercepts are always constrained to zero (so they are assumed
to be invariant without testing them). Millsap & Tein (2004) recommended
\code{parameterization = "theta"} and identified an item's residual variance
in all but the first group (or occasion; Liu et al., 2017) by constraining
its intercept to zero and one of its thresholds to equality. A second
threshold for the reference indicator (so \code{ID.fac = "UL"}) is used to
identify the common-factor means in all but the first group/occasion. The
LISREL software fixes the first threshold to zero and (if applicable) the
second threshold to 1, and assumes any remaining thresholds to be equal
across groups / repeated measures; thus, the intercepts are always
identified, and residual variances (\code{parameterization = "theta"}) are
identified except for binary data, when they are all fixed to one.
\strong{Repeated Measures:} If each repeatedly measured factor is measured
by the same indicators (specified in the same order in the
\code{configural.model}) on each occasion, without any cross-loadings, the
user can let \code{longIndNames} be automatically generated. Generic names
for the repeatedly measured indicators are created using the name of the
repeatedly measured factors (i.e., \code{names(longFacNames)}) and the
number of indicators. So the repeatedly measured first indicator
(\code{"ind"}) of a longitudinal construct called "factor" would be
generated as \code{"._factor_ind.1"}.
The same types of parameter can be specified for \code{long.equal} as for
\code{group.equal} (see \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}} for a list), except
for \code{"residual.covariances"} or \code{"lv.covariances"}. Instead, users
can constrain \emph{auto}covariances using keywords \code{"resid.autocov"}
or \code{"lv.autocov"}. Note that \code{group.equal = "lv.covariances"} or
\code{group.equal = "residual.covariances"} will constrain any
autocovariances across groups, along with any other covariances the user
specified in the \code{configural.model}. Note also that autocovariances
cannot be specified as exceptions in \code{long.partial}, so anything more
complex than the \code{auto} argument automatically provides should instead
be manually specified in the \code{configural.model}.
When users set \code{orthogonal=TRUE} in the \code{configural.model} (e.g.,
in bifactor models of repeatedly measured constructs), autocovariances of
each repeatedly measured factor will still be freely estimated in the
generated syntax.
\strong{Missing Data:} If users wish to utilize the \code{\link[=auxiliary]{auxiliary()}}
function to automatically include auxiliary variables in conjunction with
\code{missing = "FIML"}, they should first generate the hypothesized-model
syntax, then submit that syntax as the model to \code{auxiliary()}.
If users utilized \code{\link[lavaan.mi:lavaan.mi]{lavaan.mi::lavaan.mi()}} to fit their \code{configural.model}
to multiply imputed data, that model can also be passed to the
\code{configural.model} argument, and if \code{return.fit = TRUE}, the
generated model will be fitted to the multiple imputations.
}
\examples{
mod.cat <- ' FU1 =~ u1 + u2 + u3 + u4
FU2 =~ u5 + u6 + u7 + u8 '
## the 2 factors are actually the same factor (FU) measured twice
longFacNames <- list(FU = c("FU1","FU2"))
## CONFIGURAL model: no constraints across groups or repeated measures
syntax.config <- measEq.syntax(configural.model = mod.cat,
# NOTE: data provides info about numbers of
# groups and thresholds
data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames)
## print lavaan syntax to the Console
cat(as.character(syntax.config))
## print a summary of model features
summary(syntax.config)
## THRESHOLD invariance:
## only necessary to specify thresholds if you have no data
mod.th <- '
u1 | t1 + t2 + t3 + t4
u2 | t1 + t2 + t3 + t4
u3 | t1 + t2 + t3 + t4
u4 | t1 + t2 + t3 + t4
u5 | t1 + t2 + t3 + t4
u6 | t1 + t2 + t3 + t4
u7 | t1 + t2 + t3 + t4
u8 | t1 + t2 + t3 + t4
'
syntax.thresh <- measEq.syntax(configural.model = c(mod.cat, mod.th),
# NOTE: data not provided, so syntax must
# include thresholds, and number of
# groups == 2 is indicated by:
sample.nobs = c(1, 1),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds",
longFacNames = longFacNames,
long.equal = "thresholds")
## notice that constraining 4 thresholds allows intercepts and residual
## variances to be freely estimated in all but the first group & occasion
cat(as.character(syntax.thresh))
## print a summary of model features
summary(syntax.thresh)
## Fit a model to the data either in a subsequent step (recommended):
mod.config <- as.character(syntax.config)
fit.config <- cfa(mod.config, data = datCat, group = "g",
ordered = paste0("u", 1:8), parameterization = "theta")
## or in a single step (not generally recommended):
fit.thresh <- measEq.syntax(configural.model = mod.cat, data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds",
longFacNames = longFacNames,
long.equal = "thresholds", return.fit = TRUE)
## compare their fit to test threshold invariance
anova(fit.config, fit.thresh)
## --------------------------------------------------------
## RECOMMENDED PRACTICE: fit one invariance model at a time
## --------------------------------------------------------
## - A downside of setting return.fit=TRUE is that if the model has trouble
## converging, you don't have the opportunity to investigate the syntax,
## or even to know whether an error resulted from the syntax-generator or
## from lavaan itself.
## - A downside of automatically fitting an entire set of invariance models
## (like the old measurementInvariance() function did) is that you might
## end up testing models that shouldn't even be fitted because less
## restrictive models already fail (e.g., don't test full scalar
## invariance if metric invariance fails! Establish partial metric
## invariance first, then test equivalent of intercepts ONLY among the
## indicators that have invariate loadings.)
## The recommended sequence is to (1) generate and save each syntax object,
## (2) print it to the screen to verify you are fitting the model you expect
## to (and potentially learn which identification constraints should be
## released when equality constraints are imposed), and (3) fit that model
## to the data, as you would if you had written the syntax yourself.
## Continuing from the examples above, after establishing invariance of
## thresholds, we proceed to test equivalence of loadings and intercepts
## (metric and scalar invariance, respectively)
## simultaneously across groups and repeated measures.
\donttest{
## metric invariance
syntax.metric <- measEq.syntax(configural.model = mod.cat, data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,
group.equal = c("thresholds","loadings"),
long.equal = c("thresholds","loadings"))
summary(syntax.metric) # summarize model features
mod.metric <- as.character(syntax.metric) # save as text
cat(mod.metric) # print/view lavaan syntax
## fit model to data
fit.metric <- cfa(mod.metric, data = datCat, group = "g",
ordered = paste0("u", 1:8), parameterization = "theta")
## test equivalence of loadings, given equivalence of thresholds
anova(fit.thresh, fit.metric)
## scalar invariance
syntax.scalar <- measEq.syntax(configural.model = mod.cat, data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,
group.equal = c("thresholds","loadings",
"intercepts"),
long.equal = c("thresholds","loadings",
"intercepts"))
summary(syntax.scalar) # summarize model features
mod.scalar <- as.character(syntax.scalar) # save as text
cat(mod.scalar) # print/view lavaan syntax
## fit model to data
fit.scalar <- cfa(mod.scalar, data = datCat, group = "g",
ordered = paste0("u", 1:8), parameterization = "theta")
## test equivalence of intercepts, given equal thresholds & loadings
anova(fit.metric, fit.scalar)
## For a single table with all results, you can pass the models to
## summarize to the compareFit() function
Comparisons <- compareFit(fit.config, fit.thresh, fit.metric, fit.scalar)
summary(Comparisons)
## ------------------------------------------------------
## NOT RECOMMENDED: fit several invariance models at once
## ------------------------------------------------------
test.seq <- c("thresholds","loadings","intercepts","means","residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {
if (i == 0L) {
meq.label <- "configural"
group.equal <- ""
long.equal <- ""
} else {
meq.label <- test.seq[i]
group.equal <- test.seq[1:i]
long.equal <- test.seq[1:i]
}
meq.list[[meq.label]] <- measEq.syntax(configural.model = mod.cat,
data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
longFacNames = longFacNames,
long.equal = long.equal,
return.fit = TRUE)
}
evalMeasEq <- compareFit(meq.list)
summary(evalMeasEq)
## -----------------
## Binary indicators
## -----------------
## borrow example data from Mplus user guide
myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")
names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")
bin.mod <- '
FU1 =~ u1 + u2 + u3
FU2 =~ u4 + u5 + u6
'
## Must SIMULTANEOUSLY constrain thresholds, loadings, and intercepts
test.seq <- list(strong = c("thresholds","loadings","intercepts"),
means = "means",
strict = "residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {
if (i == 0L) {
meq.label <- "configural"
group.equal <- ""
long.equal <- ""
} else {
meq.label <- names(test.seq)[i]
group.equal <- unlist(test.seq[1:i])
# long.equal <- unlist(test.seq[1:i])
}
meq.list[[meq.label]] <- measEq.syntax(configural.model = bin.mod,
data = myData,
ordered = paste0("u", 1:6),
parameterization = "theta",
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
#longFacNames = longFacNames,
#long.equal = long.equal,
return.fit = TRUE)
}
evalMeasEq <- compareFit(meq.list)
summary(evalMeasEq)
## ---------------------
## Multilevel Invariance
## ---------------------
## To test invariance across levels in a MLSEM, specify syntax as though
## you are fitting to 2 groups instead of 2 levels.
mlsem <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6 '
## metric invariance
syntax.metric <- measEq.syntax(configural.model = mlsem, meanstructure = TRUE,
ID.fac = "std.lv", sample.nobs = c(1, 1),
group = "cluster", group.equal = "loadings")
## by definition, Level-1 means must be zero, so fix them
syntax.metric <- update(syntax.metric,
change.syntax = paste0("y", 1:6, " ~ c(0, NA)*1"))
## save as a character string
mod.metric <- as.character(syntax.metric, groups.as.blocks = TRUE)
## convert from multigroup to multilevel
mod.metric <- gsub(pattern = "group:", replacement = "level:",
x = mod.metric, fixed = TRUE)
## fit model to data
fit.metric <- lavaan(mod.metric, data = Demo.twolevel, cluster = "cluster")
summary(fit.metric)
}
}
\references{
Kloessner, S., & Klopp, E. (2019). Explaining constraint interaction: How
to interpret estimated model parameters under alternative scaling methods.
\emph{Structural Equation Modeling, 26}(1), 143--155.
\doi{10.1080/10705511.2018.1517356}
Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., & Grimm,
K. J. (2017). Testing measurement invariance in longitudinal data with
ordered-categorical measures. \emph{Psychological Methods, 22}(3),
486--506. \doi{10.1037/met0000075}
Millsap, R. E., & Tein, J.-Y. (2004). Assessing factorial invariance in
ordered-categorical measures. \emph{Multivariate Behavioral Research, 39}(3),
479--515. \doi{10.1207/S15327906MBR3903_4}
Wu, H., & Estabrook, R. (2016). Identification of confirmatory factor
analysis models of different levels of invariance for ordered categorical
outcomes. \emph{Psychometrika, 81}(4), 1014--1045.
\doi{10.1007/s11336-016-9506-0}
}
\seealso{
\code{\link[=compareFit]{compareFit()}}
}
\author{
Terrence D. Jorgensen (University of Amsterdam;
\email{TJorgensen314@gmail.com})
}
|