File: measEq.syntax.Rd

package info (click to toggle)
r-cran-semtools 0.5.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,204 kB
  • sloc: makefile: 2
file content (531 lines) | stat: -rw-r--r-- 26,963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/measEq.R
\name{measEq.syntax}
\alias{measEq.syntax}
\title{Syntax for measurement equivalence}
\usage{
measEq.syntax(configural.model, ..., ID.fac = "std.lv",
  ID.cat = "Wu.Estabrook.2016", ID.thr = c(1L, 2L), group = NULL,
  group.equal = "", group.partial = "", longFacNames = list(),
  longIndNames = list(), long.equal = "", long.partial = "",
  auto = "all", warn = TRUE, debug = FALSE, return.fit = FALSE)
}
\arguments{
\item{configural.model}{A model with no measurement-invariance constraints
(i.e., representing only configural invariance), unless required for model
identification. \code{configural.model} can be either:
\itemize{
\item \code{\link[lavaan:model.syntax]{lavaan::model.syntax()}} or a \code{\link[lavaan:parTable]{lavaan::parTable()}} specifying the
configural model. Using this option, the user can also provide
either raw \code{data} or summary statistics via \code{sample.cov}
and (optionally) \code{sample.mean}. See argument descriptions in
\code{\link[lavaan:lavaan]{lavaan::lavaan()}}. In order to include thresholds in
the generated syntax, either users must provide raw \code{data},
or the \code{configural.model} syntax must specify all thresholds
(see first example). If raw \code{data} are not provided, the
number of blocks (groups, levels, or combination) must be
indicated using an arbitrary \code{sample.nobs} argument (e.g.,
3 groups could be specified using \code{sample.nobs=rep(1, 3)}).
\item a fitted \link[lavaan:lavaan-class]{lavaan::lavaan} model (e.g., as returned by
\code{\link[lavaan:cfa]{lavaan::cfa()}}) estimating the configural model
}
Note that the specified or fitted model must not contain any latent
structural parameters (i.e., it must be a CFA model), unless they are
higher-order constructs with latent indicators (i.e., a second-order CFA).}

\item{...}{Additional arguments (e.g., \code{data}, \code{ordered}, or
\code{parameterization}) passed to the \code{\link[lavaan:lavaan]{lavaan::lavaan()}}
function. See also \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}.}

\item{ID.fac}{\code{character}. The method for identifying common-factor
variances and (if \code{meanstructure = TRUE}) means. Three methods are
available, which go by different names in the literature:
\itemize{
\item Standardize the common factor (mean = 0, \emph{SD} = 1) by
specifying any of: \code{"std.lv"}, \code{"unit.variance"},
\code{"UV"}, \code{"fixed.factor"},
\code{"fixed-factor"}
\item Choose a reference indicator by specifying any of:
\code{"auto.fix.first"}, \code{"unit.loading"}, \code{"UL"},
\code{"marker"}, \code{"ref"},  \code{"ref.indicator"},
\code{"reference.indicator"}, \code{"reference-indicator"},
\code{"marker.variable"}, \code{"marker-variable"}
\item Apply effects-code constraints to loadings and intercepts by
specifying any of: \code{"FX"}, \code{"EC"}, \code{"effects"},
\code{"effects.coding"}, \code{"effects-coding"},
\code{"effects.code"}, \code{"effects-code"}
}
See Kloessner & Klopp (2019) for details about all three methods.}

\item{ID.cat}{\code{character}. The method for identifying (residual)
variances and intercepts of latent item-responses underlying any
\code{ordered} indicators. Four methods are available:
\itemize{
\item To follow Wu & Estabrook's (2016) guidelines (default), specify
any of: \code{"Wu.Estabrook.2016"}, \code{"Wu.2016"},
\code{"Wu.Estabrook"}, \code{"Wu"}, \code{"Wu2016"}. For
consistency, specify \code{ID.fac = "std.lv"}.
\item To use the default settings of M\emph{plus} and \code{lavaan},
specify any of: \code{"default"}, \code{"Mplus"}, \code{"Muthen"}.
Details provided in Millsap & Tein (2004).
\item To use the constraints recommended by Millsap & Tein (2004; see
also Liu et al., 2017, for the longitudinal case)
specify any of: \code{"millsap"}, \code{"millsap.2004"},
\code{"millsap.tein.2004"}. For consistency, specify
\code{ID.fac = "marker"} and \code{parameterization = "theta"}.
\item To use the default settings of LISREL, specify \code{"LISREL"}
or \code{"Joreskog"}. Details provided in Millsap & Tein (2004).
For consistency, specify \code{parameterization = "theta"}.
}
See \strong{Details} and \strong{References} for more information.}

\item{ID.thr}{\code{integer}. Only relevant when
\code{ID.cat = "Millsap.Tein.2004"}. Used to indicate which thresholds
should be constrained for identification. The first integer indicates the
threshold used for all indicators, the second integer indicates the
additional threshold constrained for a reference indicator (ignored if
binary).}

\item{group}{optional \code{character} indicating the name of a grouping
variable. See \code{\link[lavaan:cfa]{lavaan::cfa()}}.}

\item{group.equal}{optional \code{character} vector indicating type(s) of
parameter to equate across groups. Ignored if \code{is.null(group)}.
See \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}.}

\item{group.partial}{optional \code{character} vector or a parameter table
indicating exceptions to \code{group.equal} (see
\code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}). Any variables not appearing in the
\code{configural.model} will be ignored, and any parameter constraints
needed for identification (e.g., two thresholds per indicator when
\code{ID.cat = "Millsap"}) will be removed.}

\item{longFacNames}{optional named \code{list} of \code{character} vectors,
each indicating multiple factors in the model that are actually the same
construct measured repeatedly. See \strong{Details} and \strong{Examples}.}

\item{longIndNames}{optional named \code{list} of \code{character} vectors,
each indicating multiple indicators in the model that are actually the
same indicator measured repeatedly. See \strong{Details} and
\strong{Examples}.}

\item{long.equal}{optional \code{character} vector indicating type(s) of
parameter to equate across repeated measures. Ignored if no factors are
indicated as repeatedly measured in \code{longFacNames}.}

\item{long.partial}{optional \code{character} vector or a parameter table
indicating exceptions to \code{long.equal}. Any longitudinal variable
names not  appearing in \code{names(longFacNames)} or
\code{names(longIndNames)} will be ignored, and any parameter constraints
needed for identification will be removed.}

\item{auto}{Used to automatically included autocorrelated measurement errors
among repeatedly measured indicators in \code{longIndNames}. Specify a
single \code{integer} to set the maximum order (e.g., \code{auto = 1L}
indicates that an indicator's unique factors should only be correlated
between adjacently measured occasions). \code{auto = TRUE} or \code{"all"}
will specify residual covariances among all possible lags per repeatedly
measured indicator in \code{longIndNames}.}

\item{warn, debug}{\code{logical}. Passed to \code{\link[lavaan:lavaan]{lavaan::lavaan()}}
and \code{\link[lavaan:model.syntax]{lavaan::lavParseModelString()}}.
See \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}}.}

\item{return.fit}{\code{logical} indicating whether the generated syntax
should be fitted to the provided \code{data} (or summary statistics, if
provided via \code{sample.cov}). If \code{configural.model} is a fitted
lavaan model, the generated syntax will be fitted using the \code{update}
method (see \link[lavaan:lavaan-class]{lavaan::lavaan}), and \dots will be passed to
\code{\link[lavaan:lavaan]{lavaan::lavaan()}}. If neither data nor a fitted lavaan model
were provided, this must be \code{FALSE}. If \code{TRUE}, the generated
\code{measEq.syntax} object will be included in the \code{lavaan} object's
\verb{@external} slot, accessible by \code{fit@external$measEq.syntax}.}
}
\value{
By default, an object of class \linkS4class{measEq.syntax}.
If \code{return.fit = TRUE}, a fitted \code{\link[lavaan:lavaan]{lavaan::lavaan()}}
model, with the \code{measEq.syntax} object stored in the
\verb{@external} slot, accessible by \code{fit@external$measEq.syntax}.
}
\description{
Automatically generates \code{lavaan} model syntax to specify a confirmatory
factor analysis (CFA) model with equality constraints imposed on
user-specified measurement (or structural) parameters. Optionally returns
the fitted model (if data are provided) representing some chosen level of
measurement equivalence/invariance across groups and/or repeated measures.
}
\details{
This function is a pedagogical and analytical tool to generate model syntax
representing some level of measurement equivalence/invariance across any
combination of multiple groups and/or repeated measures. Support is provided
for confirmatory factor analysis (CFA) models with simple or complex
structure (i.e., cross-loadings and correlated residuals are allowed).
For any complexities that exceed the limits of automation, this function is
intended to still be useful by providing a means to generate syntax that
users can easily edit to accommodate their unique situations.

Limited support is provided for bifactor models and higher-order constructs.
Because bifactor models have cross-loadings by definition, the option
\code{ID.fac = "effects.code"} is unavailable. \code{ID.fac = "UV"} is
recommended for bifactor models, but \code{ID.fac = "UL"} is available on
the condition that each factor has a unique first indicator in the
\code{configural.model}. In order to maintain generality, higher-order
factors may include a mix of manifest and latent indicators, but they must
therefore require \code{ID.fac = "UL"} to avoid complications with
differentiating lower-order vs. higher-order (or mixed-level) factors.
The keyword \code{"loadings"} in \code{group.equal} or \code{long.equal}
constrains factor loadings of all manifest indicators (including loadings on
higher-order factors that also have latent indicators), whereas the keyword
\code{"regressions"} constrains factor loadings of latent indicators. Users
can edit the model syntax manually to adjust constraints as necessary, or
clever use of the \code{group.partial} or \code{long.partial} arguments
could make it possible for users to still automated their model syntax.
The keyword \code{"intercepts"} constrains the intercepts of all manifest
indicators, and the keyword \code{"means"} constrains intercepts and means
of all latent common factors, regardless of whether they are latent
indicators of higher-order factors.  To test equivalence of lower-order and
higher-order intercepts/means in separate steps, the user can either
manually edit their generated syntax or conscientiously exploit the
\code{group.partial} or \code{long.partial} arguments as necessary.

\strong{\code{ID.fac}:} If the \code{configural.model} fixes any (e.g.,
the first) factor loadings, the generated syntax object will retain those
fixed values. This allows the user to retain additional constraints that
might be necessary (e.g., if there are only 1 or 2 indicators). Some methods
must be used in conjunction with other settings:
\itemize{
\item \code{ID.cat = "Millsap"} requires \code{ID.fac = "UL"} and
\code{parameterization = "theta"}.
\item \code{ID.cat = "LISREL"} requires \code{parameterization = "theta"}.
\item \code{ID.fac = "effects.code"} is unavailable when there are any
cross-loadings.
}

\strong{\code{ID.cat}:} Wu & Estabrook (2016) recommended constraining
thresholds to equality first, and doing so should allow releasing any
identification constraints no longer needed. For each \code{ordered}
indicator, constraining one threshold to equality will allow the item's
intercepts to be estimated in all but the first group or repeated measure.
Constraining a second threshold (if applicable) will allow the item's
(residual) variance to be estimated in all but the first group or repeated
measure. For binary data, there is no independent test of threshold,
intercept, or residual-variance equality. Equivalence of thresholds must
also be assumed for three-category indicators. These guidelines provide the
least restrictive assumptions and tests, and are therefore the default.

The default setting in M\emph{plus} is similar to Wu & Estabrook (2016),
except that intercepts are always constrained to zero (so they are assumed
to be invariant without testing them). Millsap & Tein (2004) recommended
\code{parameterization = "theta"} and identified an item's residual variance
in all but the first group (or occasion; Liu et al., 2017) by constraining
its intercept to zero and one of its thresholds to equality. A second
threshold for the reference indicator (so \code{ID.fac = "UL"}) is used to
identify the common-factor means in all but the first group/occasion. The
LISREL software fixes the first threshold to zero and (if applicable) the
second threshold to 1, and assumes any remaining thresholds to be equal
across groups / repeated measures; thus, the intercepts are always
identified, and residual variances (\code{parameterization = "theta"}) are
identified except for binary data, when they are all fixed to one.

\strong{Repeated Measures:} If each repeatedly measured factor is measured
by the same indicators (specified in the same order in the
\code{configural.model}) on each occasion, without any cross-loadings, the
user can let \code{longIndNames} be automatically generated. Generic names
for the repeatedly measured indicators are created using the name of the
repeatedly measured factors (i.e., \code{names(longFacNames)}) and the
number of indicators. So the repeatedly measured first indicator
(\code{"ind"}) of a longitudinal construct called "factor" would be
generated as \code{"._factor_ind.1"}.

The same types of parameter can be specified for \code{long.equal} as for
\code{group.equal} (see \code{\link[lavaan:lavOptions]{lavaan::lavOptions()}} for a list), except
for \code{"residual.covariances"} or \code{"lv.covariances"}. Instead, users
can constrain \emph{auto}covariances using keywords \code{"resid.autocov"}
or \code{"lv.autocov"}. Note that \code{group.equal = "lv.covariances"} or
\code{group.equal = "residual.covariances"} will constrain any
autocovariances across groups, along with any other covariances the user
specified in the \code{configural.model}. Note also that autocovariances
cannot be specified as exceptions in \code{long.partial}, so anything more
complex than the \code{auto} argument automatically provides should instead
be manually specified in the \code{configural.model}.

When users set \code{orthogonal=TRUE} in the \code{configural.model} (e.g.,
in bifactor models of repeatedly measured constructs), autocovariances of
each repeatedly measured factor will still be freely estimated in the
generated syntax.

\strong{Missing Data:} If users wish to utilize the \code{\link[=auxiliary]{auxiliary()}}
function to automatically include auxiliary variables in conjunction with
\code{missing = "FIML"}, they should first generate the hypothesized-model
syntax, then submit that syntax as the model to \code{auxiliary()}.
If users utilized \code{\link[lavaan.mi:lavaan.mi]{lavaan.mi::lavaan.mi()}} to fit their \code{configural.model}
to multiply imputed data, that model can also be passed to the
\code{configural.model} argument, and if \code{return.fit = TRUE}, the
generated model will be fitted to the multiple imputations.
}
\examples{
mod.cat <- ' FU1 =~ u1 + u2 + u3 + u4
             FU2 =~ u5 + u6 + u7 + u8 '
## the 2 factors are actually the same factor (FU) measured twice
longFacNames <- list(FU = c("FU1","FU2"))

## CONFIGURAL model: no constraints across groups or repeated measures
syntax.config <- measEq.syntax(configural.model = mod.cat,
                               # NOTE: data provides info about numbers of
                               #       groups and thresholds
                               data = datCat,
                               ordered = paste0("u", 1:8),
                               parameterization = "theta",
                               ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
                               group = "g", longFacNames = longFacNames)
## print lavaan syntax to the Console
cat(as.character(syntax.config))
## print a summary of model features
summary(syntax.config)

## THRESHOLD invariance:
## only necessary to specify thresholds if you have no data
mod.th <- '
  u1 | t1 + t2 + t3 + t4
  u2 | t1 + t2 + t3 + t4
  u3 | t1 + t2 + t3 + t4
  u4 | t1 + t2 + t3 + t4
  u5 | t1 + t2 + t3 + t4
  u6 | t1 + t2 + t3 + t4
  u7 | t1 + t2 + t3 + t4
  u8 | t1 + t2 + t3 + t4
'
syntax.thresh <- measEq.syntax(configural.model = c(mod.cat, mod.th),
                               # NOTE: data not provided, so syntax must
                               #       include thresholds, and number of
                               #       groups == 2 is indicated by:
                               sample.nobs = c(1, 1),
                               parameterization = "theta",
                               ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
                               group = "g", group.equal = "thresholds",
                               longFacNames = longFacNames,
                               long.equal = "thresholds")
## notice that constraining 4 thresholds allows intercepts and residual
## variances to be freely estimated in all but the first group & occasion
cat(as.character(syntax.thresh))
## print a summary of model features
summary(syntax.thresh)


## Fit a model to the data either in a subsequent step (recommended):
mod.config <- as.character(syntax.config)
fit.config <- cfa(mod.config, data = datCat, group = "g",
                  ordered = paste0("u", 1:8), parameterization = "theta")
## or in a single step (not generally recommended):
fit.thresh <- measEq.syntax(configural.model = mod.cat, data = datCat,
                            ordered = paste0("u", 1:8),
                            parameterization = "theta",
                            ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
                            group = "g", group.equal = "thresholds",
                            longFacNames = longFacNames,
                            long.equal = "thresholds", return.fit = TRUE)
## compare their fit to test threshold invariance
anova(fit.config, fit.thresh)


## --------------------------------------------------------
## RECOMMENDED PRACTICE: fit one invariance model at a time
## --------------------------------------------------------

## - A downside of setting return.fit=TRUE is that if the model has trouble
##   converging, you don't have the opportunity to investigate the syntax,
##   or even to know whether an error resulted from the syntax-generator or
##   from lavaan itself.
## - A downside of automatically fitting an entire set of invariance models
##   (like the old measurementInvariance() function did) is that you might
##   end up testing models that shouldn't even be fitted because less
##   restrictive models already fail (e.g., don't test full scalar
##   invariance if metric invariance fails! Establish partial metric
##   invariance first, then test equivalent of intercepts ONLY among the
##   indicators that have invariate loadings.)

## The recommended sequence is to (1) generate and save each syntax object,
## (2) print it to the screen to verify you are fitting the model you expect
## to (and potentially learn which identification constraints should be
## released when equality constraints are imposed), and (3) fit that model
## to the data, as you would if you had written the syntax yourself.

## Continuing from the examples above, after establishing invariance of
## thresholds, we proceed to test equivalence of loadings and intercepts
##   (metric and scalar invariance, respectively)
## simultaneously across groups and repeated measures.

\donttest{

## metric invariance
syntax.metric <- measEq.syntax(configural.model = mod.cat, data = datCat,
                               ordered = paste0("u", 1:8),
                               parameterization = "theta",
                               ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
                               group = "g", longFacNames = longFacNames,
                               group.equal = c("thresholds","loadings"),
                               long.equal  = c("thresholds","loadings"))
summary(syntax.metric)                    # summarize model features
mod.metric <- as.character(syntax.metric) # save as text
cat(mod.metric)                           # print/view lavaan syntax
## fit model to data
fit.metric <- cfa(mod.metric, data = datCat, group = "g",
                  ordered = paste0("u", 1:8), parameterization = "theta")
## test equivalence of loadings, given equivalence of thresholds
anova(fit.thresh, fit.metric)

## scalar invariance
syntax.scalar <- measEq.syntax(configural.model = mod.cat, data = datCat,
                               ordered = paste0("u", 1:8),
                               parameterization = "theta",
                               ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
                               group = "g", longFacNames = longFacNames,
                               group.equal = c("thresholds","loadings",
                                               "intercepts"),
                               long.equal  = c("thresholds","loadings",
                                               "intercepts"))
summary(syntax.scalar)                    # summarize model features
mod.scalar <- as.character(syntax.scalar) # save as text
cat(mod.scalar)                           # print/view lavaan syntax
## fit model to data
fit.scalar <- cfa(mod.scalar, data = datCat, group = "g",
                  ordered = paste0("u", 1:8), parameterization = "theta")
## test equivalence of intercepts, given equal thresholds & loadings
anova(fit.metric, fit.scalar)


## For a single table with all results, you can pass the models to
## summarize to the compareFit() function
Comparisons <- compareFit(fit.config, fit.thresh, fit.metric, fit.scalar)
summary(Comparisons)


## ------------------------------------------------------
## NOT RECOMMENDED: fit several invariance models at once
## ------------------------------------------------------
test.seq <- c("thresholds","loadings","intercepts","means","residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {
  if (i == 0L) {
    meq.label <- "configural"
    group.equal <- ""
    long.equal <- ""
  } else {
    meq.label <- test.seq[i]
    group.equal <- test.seq[1:i]
    long.equal <- test.seq[1:i]
  }
  meq.list[[meq.label]] <- measEq.syntax(configural.model = mod.cat,
                                         data = datCat,
                                         ordered = paste0("u", 1:8),
                                         parameterization = "theta",
                                         ID.fac = "std.lv",
                                         ID.cat = "Wu.Estabrook.2016",
                                         group = "g",
                                         group.equal = group.equal,
                                         longFacNames = longFacNames,
                                         long.equal = long.equal,
                                         return.fit = TRUE)
}

evalMeasEq <- compareFit(meq.list)
summary(evalMeasEq)


## -----------------
## Binary indicators
## -----------------

## borrow example data from Mplus user guide
myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")
names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")
bin.mod <- '
  FU1 =~ u1 + u2 + u3
  FU2 =~ u4 + u5 + u6
'
## Must SIMULTANEOUSLY constrain thresholds, loadings, and intercepts
test.seq <- list(strong = c("thresholds","loadings","intercepts"),
                 means = "means",
                 strict = "residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {
  if (i == 0L) {
    meq.label <- "configural"
    group.equal <- ""
    long.equal <- ""
  } else {
    meq.label <- names(test.seq)[i]
    group.equal <- unlist(test.seq[1:i])
    # long.equal <- unlist(test.seq[1:i])
  }
  meq.list[[meq.label]] <- measEq.syntax(configural.model = bin.mod,
                                         data = myData,
                                         ordered = paste0("u", 1:6),
                                         parameterization = "theta",
                                         ID.fac = "std.lv",
                                         ID.cat = "Wu.Estabrook.2016",
                                         group = "g",
                                         group.equal = group.equal,
                                         #longFacNames = longFacNames,
                                         #long.equal = long.equal,
                                         return.fit = TRUE)
}

evalMeasEq <- compareFit(meq.list)
summary(evalMeasEq)



## ---------------------
## Multilevel Invariance
## ---------------------

## To test invariance across levels in a MLSEM, specify syntax as though
## you are fitting to 2 groups instead of 2 levels.

mlsem <- ' f1 =~ y1 + y2 + y3
           f2 =~ y4 + y5 + y6 '
## metric invariance
syntax.metric <- measEq.syntax(configural.model = mlsem, meanstructure = TRUE,
                               ID.fac = "std.lv", sample.nobs = c(1, 1),
                               group = "cluster", group.equal = "loadings")
## by definition, Level-1 means must be zero, so fix them
syntax.metric <- update(syntax.metric,
                        change.syntax = paste0("y", 1:6, " ~ c(0, NA)*1"))
## save as a character string
mod.metric <- as.character(syntax.metric, groups.as.blocks = TRUE)
## convert from multigroup to multilevel
mod.metric <- gsub(pattern = "group:", replacement = "level:",
                   x = mod.metric, fixed = TRUE)
## fit model to data
fit.metric <- lavaan(mod.metric, data = Demo.twolevel, cluster = "cluster")
summary(fit.metric)
}
}
\references{
Kloessner, S., & Klopp, E. (2019). Explaining constraint interaction: How
to interpret estimated model parameters under alternative scaling methods.
\emph{Structural Equation Modeling, 26}(1), 143--155.
\doi{10.1080/10705511.2018.1517356}

Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., & Grimm,
K. J. (2017). Testing measurement invariance in longitudinal data with
ordered-categorical measures. \emph{Psychological Methods, 22}(3),
486--506. \doi{10.1037/met0000075}

Millsap, R. E., & Tein, J.-Y. (2004). Assessing factorial invariance in
ordered-categorical measures. \emph{Multivariate Behavioral Research, 39}(3),
479--515. \doi{10.1207/S15327906MBR3903_4}

Wu, H., & Estabrook, R. (2016). Identification of confirmatory factor
analysis models of different levels of invariance for ordered categorical
outcomes. \emph{Psychometrika, 81}(4), 1014--1045.
\doi{10.1007/s11336-016-9506-0}
}
\seealso{
\code{\link[=compareFit]{compareFit()}}
}
\author{
Terrence D. Jorgensen (University of Amsterdam;
\email{TJorgensen314@gmail.com})
}