1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/miPowerFit.R
\name{miPowerFit}
\alias{miPowerFit}
\title{Modification indices and their power approach for model fit evaluation}
\usage{
miPowerFit(lavaanObj, stdLoad = 0.4, cor = 0.1, stdBeta = 0.1,
intcept = 0.2, stdDelta = NULL, delta = NULL, cilevel = 0.9, ...)
}
\arguments{
\item{lavaanObj}{The lavaan model object used to evaluate model fit}
\item{stdLoad}{The amount of standardized factor loading that one would like
to be detected (rejected). The default value is 0.4, which is suggested by
Saris and colleagues (2009, p. 571).}
\item{cor}{The amount of factor or error correlations that one would like to
be detected (rejected). The default value is 0.1, which is suggested by
Saris and colleagues (2009, p. 571).}
\item{stdBeta}{The amount of standardized regression coefficients that one
would like to be detected (rejected). The default value is 0.1, which is
suggested by Saris and colleagues (2009, p. 571).}
\item{intcept}{The amount of standardized intercept (similar to Cohen's
\emph{d} that one would like to be detected (rejected). The default value
is 0.2, which is equivalent to a low effect size proposed by Cohen (1988,
1992).}
\item{stdDelta}{The vector of the standardized parameters that one would
like to be detected (rejected). If this argument is specified, the value
here will overwrite the other arguments above. The order of the vector
must be the same as the row order from modification indices from the
\code{lavaan} object. If a single value is specified, the value will be
applied to all parameters.}
\item{delta}{The vector of the unstandardized parameters that one would like
to be detected (rejected). If this argument is specified, the value here
will overwrite the other arguments above. The order of the vector must be
the same as the row order from modification indices from the \code{lavaan}
object. If a single value is specified, the value will be applied to all
parameters.}
\item{cilevel}{The confidence level of the confidence interval of expected
parameter changes. The confidence intervals are used in the equivalence
testing.}
\item{\dots}{arguments passed to \code{\link[lavaan:modificationIndices]{lavaan::modificationIndices()}},
except for \code{delta}, which is already an argument (which can be
substituted for \code{stdDelta} or specific sets of parameters using
\code{stdLoad}, \code{cor}, \code{stdBeta}, and \code{intcept}).}
}
\value{
A data frame with these variables:
\enumerate{
\item \code{lhs}: The left-hand side variable, with respect to the operator in
in the lavaan \code{\link[lavaan:model.syntax]{lavaan::model.syntax()}}
\item \code{op}: The lavaan syntax operator: "~~" represents covariance,
"=~" represents factor loading, "~" represents regression, and
"~1" represents intercept.
\item \code{rhs}: The right-hand side variable
\item \code{group}: The level of the group variable for the parameter in question
\item \code{mi}: The modification index of the fixed parameter
\item \code{epc}: The EPC if the parameter is freely estimated
\item \code{target.epc}: The target EPC that represents the minimum size
of misspecification that one would like to be detected
by the test with a high power
\item \code{std.epc}: The standardized EPC if the parameter is freely estimated
\item \code{std.target.epc}: The standardized target expected parameter change
\item \code{significant.mi}: Represents whether the modification index value is
significant
\item \code{high.power}: Represents whether the power is enough to detect the
target expected parameter change
\item \code{decision.pow}: The decision whether the parameter is misspecified
or not based on Saris et al's method: \code{"M"} represents the parameter
is misspecified, \code{"NM"} represents the parameter is not misspecified,
\code{"EPC:M"} represents the parameter is misspecified decided by
checking the expected parameter change value, \code{"EPC:NM"} represents
the parameter is not misspecified decided by checking the expected
parameter change value, and \code{"I"} represents the decision is
inconclusive.
\item \code{se.epc}: The standard errors of the expected parameter changes.
\item \code{lower.epc}: The lower bound of the confidence interval of expected
parameter changes.
\item \code{upper.epc}: The upper bound of the confidence interval of expected
parameter changes.
\item \code{lower.std.epc}: Lower confidence limit of standardized EPCs
\item \code{upper.std.epc}: Upper confidence limit of standardized EPCs
\item \code{decision.ci}: Decision whether the parameter is misspecified
based on the CI method: \code{"M"} represents the
parameter is misspecified, \code{"NM"} represents the parameter is not
misspecified, and \code{"I"} represents the decision is inconclusive.
}
The row numbers matches with the results obtained from the
\code{inspect(object, "mi")} function.
}
\description{
The model fit evaluation approach using modification indices and expected
parameter changes.
}
\details{
To decide whether a parameter should be freed, one can inspect its
modification index (MI) and expected parameter change (EPC).
Those values can be used to evaluate model fit by 2 methods.
Method 1: Saris, Satorra, and van der Veld (2009, pp. 570--573) used
power (probability of detecting a significant MI) and EPC to decide whether
to free a parametr. First, one should evaluate whether a parameter's MI
is significant. Second, one should evaluate whether the power to detect a
target EPC is high enough. The combination of criteria leads to the
so-called "JRule" first implemented with LISREL (van der Veld et al., 2008):
\itemize{
\item If the MI is not significant and the power is low,
the test is inconclusive.
\item If the MI is not significant and the power is high,
there is no misspecification.
\item If the MI is significant and the power is low,
the fixed parameter is misspecified.
\item If the MI is significant and the power is high,
the EPC is investigated. If the EPC is large (greater than the
the target EPC), the parameter is misspecified. If the EPC is low
(lower than the target EPC), the parameter is not misspecificied.
}
Method 2: The confidence interval (CI) of an EPC is calculated.
These CIs are compared with the range of trivial
misspecification, which could be (-\code{delta}, \code{delta}) or (0,
\code{delta}) for nonnegative parameters.
\itemize{
\item If a CI overlaps with the range of trivial misspecification,
the test is inconclusive.
\item If a CI completely exceeds the range of trivial misspecification,
the fixed parameters are severely misspecified.
\item If a CI is completely within the range of trivial misspecification,
the fixed parameters are trivially misspecified.
}
}
\examples{
library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3 '
fit <- cfa(HS.model, data = HolzingerSwineford1939,
group = "sex", group.equal = c("loadings","intercepts"))
miPowerFit(fit, free.remove = FALSE, op = "=~") # loadings
miPowerFit(fit, free.remove = FALSE, op = "~1") # intercepts
model <- '
# latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
'
fit2 <- sem(model, data = PoliticalDemocracy, meanstructure = TRUE)
miPowerFit(fit2, stdLoad = 0.3, cor = 0.2, stdBeta = 0.2, intcept = 0.5)
}
\references{
Cohen, J. (1988). \emph{Statistical power analysis for the
behavioral sciences} (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J. (1992). A power primer. \emph{Psychological Bulletin, 112}(1),
155--159. \doi{10.1037/0033-2909.112.1.155}
Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural
equation models or detection of misspecifications? \emph{Structural Equation
Modeling, 16}(4), 561--582. \doi{10.1080/10705510903203433}
van der Veld, W. M., Saris, W. E., & Satorra, A. (2008).
\emph{JRule 3.0 Users Guide}. \doi{10.13140/RG.2.2.13609.90729}
}
\seealso{
\code{\link[=moreFitIndices]{moreFitIndices()}} For the additional fit indices
information
}
\author{
Sunthud Pornprasertmanit (\email{psunthud@gmail.com})
}
|