1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/powerAnalysisRMSEA.R
\name{plotRMSEAdist}
\alias{plotRMSEAdist}
\title{Plot the sampling distributions of RMSEA}
\usage{
plotRMSEAdist(rmsea, n, df, ptile = NULL, caption = NULL,
rmseaScale = TRUE, group = 1)
}
\arguments{
\item{rmsea}{The vector of RMSEA values to be plotted}
\item{n}{Sample size of a dataset}
\item{df}{Model degrees of freedom}
\item{ptile}{The percentile rank of the distribution of the first RMSEA that
users wish to plot a vertical line in the resulting graph}
\item{caption}{The name vector of each element of \code{rmsea}}
\item{rmseaScale}{If \code{TRUE}, the RMSEA scale is used in the x-axis. If
\code{FALSE}, the chi-square scale is used in the x-axis.}
\item{group}{The number of group that is used to calculate RMSEA.}
}
\description{
Plots the sampling distributions of RMSEA based on the noncentral chi-square
distributions
}
\details{
This function creates overlappling plots of the sampling distribution of
RMSEA based on noncentral \eqn{\chi^2} distribution (MacCallum, Browne, &
Suguwara, 1996). First, the noncentrality parameter (\eqn{\lambda}) is
calculated from RMSEA (Steiger, 1998; Dudgeon, 2004) by \deqn{\lambda = (N -
1)d\varepsilon^2 / K,} where \eqn{N} is sample size, \eqn{d} is the model
degree of freedom, \eqn{K} is the number of group, and \eqn{\varepsilon} is
the population RMSEA. Next, the noncentral \eqn{\chi^2} distribution with a
specified \emph{df} and noncentrality parameter is plotted. Thus,
the x-axis represents the sample \eqn{\chi^2} value. The sample \eqn{\chi^2}
value can be transformed to the sample RMSEA scale (\eqn{\hat{\varepsilon}})
by \deqn{\hat{\varepsilon} = \sqrt{K}\sqrt{\frac{\chi^2 - d}{(N - 1)d}},}
where \eqn{\chi^2} is the \eqn{\chi^2} value obtained from the noncentral
\eqn{\chi^2} distribution.
}
\examples{
plotRMSEAdist(c(.05, .08), n = 200, df = 20, ptile = .95, rmseaScale = TRUE)
plotRMSEAdist(c(.05, .01), n = 200, df = 20, ptile = .05, rmseaScale = FALSE)
}
\references{
Dudgeon, P. (2004). A note on extending Steiger's (1998)
multiple sample RMSEA adjustment to other noncentrality parameter-based
statistic. \emph{Structural Equation Modeling, 11}(3), 305--319.
\doi{10.1207/s15328007sem1103_1}
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis
and determination of sample size for covariance structure modeling.
\emph{Psychological Methods, 1}(2), 130--149. \doi{10.1037/1082-989X.1.2.130}
Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit
index. \emph{Structural Equation Modeling, 5}(4), 411--419.
\doi{10.1080/10705519809540115}
}
\seealso{
\itemize{
\item \code{\link[=plotRMSEApower]{plotRMSEApower()}} to plot the statistical power
based on population RMSEA given the sample size
\item \code{\link[=findRMSEApower]{findRMSEApower()}} to find the statistical power based on
population RMSEA given a sample size
\item \code{\link[=findRMSEAsamplesize]{findRMSEAsamplesize()}} to find the minium sample size for
a given statistical power based on population RMSEA
}
}
\author{
Sunthud Pornprasertmanit (\email{psunthud@gmail.com})
}
|