1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/powerAnalysisRMSEA.R
\name{plotRMSEApower}
\alias{plotRMSEApower}
\title{Plot power curves for RMSEA}
\usage{
plotRMSEApower(rmsea0, rmseaA, df, nlow, nhigh, steps = 1, alpha = 0.05,
group = 1, ...)
}
\arguments{
\item{rmsea0}{Null RMSEA}
\item{rmseaA}{Alternative RMSEA}
\item{df}{Model degrees of freedom}
\item{nlow}{Lower sample size}
\item{nhigh}{Upper sample size}
\item{steps}{Increase in sample size for each iteration. Smaller values of
steps will lead to more precise plots. However, smaller step sizes means a
longer run time.}
\item{alpha}{Alpha level used in power calculations}
\item{group}{The number of group that is used to calculate RMSEA.}
\item{\dots}{The additional arguments for the plot function.}
}
\value{
Plot of power for RMSEA against a range of sample sizes
}
\description{
Plots power of RMSEA over a range of sample sizes
}
\details{
This function creates plot of power for RMSEA against a range of sample
sizes. The plot places sample size on the horizontal axis and power on the
vertical axis. The user should indicate the lower and upper values for
sample size and the sample size between each estimate ("step size") We
strongly urge the user to read the sources below (see References) before
proceeding. A web version of this function is available at:
\url{http://quantpsy.org/rmsea/rmseaplot.htm}. This function is also
implemented in the web application "power4SEM":
\url{https://sjak.shinyapps.io/power4SEM/}
}
\examples{
plotRMSEApower(rmsea0 = .025, rmseaA = .075, df = 23,
nlow = 100, nhigh = 500, steps = 10)
}
\references{
MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing
differences between nested covariance structure models: Power analysis and
null hypotheses. \emph{Psychological Methods, 11}(1), 19--35.
\doi{10.1037/1082-989X.11.1.19}
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis
and determination of sample size for covariance structure modeling.
\emph{Psychological Methods, 1}(2), 130--149. \doi{10.1037/1082-989X.1.2.130}
MacCallum, R. C., Lee, T., & Browne, M. W. (2010). The issue of isopower in
power analysis for tests of structural equation models. \emph{Structural
Equation Modeling, 17}(1), 23--41. \doi{10.1080/10705510903438906}
Preacher, K. J., Cai, L., & MacCallum, R. C. (2007). Alternatives to
traditional model comparison strategies for covariance structure models. In
T. D. Little, J. A. Bovaird, & N. A. Card (Eds.), \emph{Modeling contextual
effects in longitudinal studies} (pp. 33--62). Mahwah, NJ: Lawrence Erlbaum
Associates.
Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit
index. \emph{Structural Equation Modeling, 5}(4), 411--419.
\doi{10.1080/10705519809540115}
Steiger, J. H., & Lind, J. C. (1980, June). \emph{Statistically based tests
for the number of factors.} Paper presented at the annual meeting of the
Psychometric Society, Iowa City, IA.
Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L.
(2021). Analytical power calculations for structural equation modeling:
A tutorial and Shiny app. \emph{Behavior Research Methods, 53}, 1385--1406.
\doi{10.3758/s13428-020-01479-0}
}
\seealso{
\itemize{
\item \code{\link[=plotRMSEAdist]{plotRMSEAdist()}} to visualize the RMSEA distributions
\item \code{\link[=findRMSEApower]{findRMSEApower()}} to find the statistical power based on
population RMSEA given a sample size
\item \code{\link[=findRMSEAsamplesize]{findRMSEAsamplesize()}} to find the minium sample size for
a given statistical power based on population RMSEA
}
}
\author{
Alexander M. Schoemann (East Carolina University; \email{schoemanna@ecu.edu})
Kristopher J. Preacher (Vanderbilt University; \email{kris.preacher@vanderbilt.edu})
Donna L. Coffman (Pennsylvania State University; \email{dlc30@psu.edu})
}
|