File: interval.Rd

package info (click to toggle)
r-cran-sets 1.0.25%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 632 kB
  • sloc: ansic: 422; makefile: 7
file content (300 lines) | stat: -rwxr-xr-x 8,283 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
\name{interval}
\alias{as.character.interval}
\alias{as.double.interval}
\alias{as.interval}
\alias{as.interval.default}
\alias{as.interval.interval}
\alias{as.interval.list}
\alias{as.interval.NULL}
\alias{as.interval.numeric}
\alias{as.interval.set}
\alias{as.interval.tuple}
\alias{as.list.interval}
\alias{integers}
\alias{integers2reals}
\alias{interval}
\alias{interval_complement}
\alias{interval_contains_element}
\alias{interval_difference}
\alias{interval_division}
\alias{interval_domain}
\alias{interval_intersection}
\alias{interval_is_bounded}
\alias{interval_is_closed}
\alias{interval_is_countable}
\alias{interval_is_degenerate}
\alias{interval_is_empty}
\alias{interval_is_equal}
\alias{interval_is_less_than_or_equal}
\alias{interval_is_greater_than_or_equal}
\alias{interval_is_less_than}
\alias{interval_is_greater_than}
\alias{interval_is_finite}
\alias{interval_is_half_bounded}
\alias{interval_is_left_bounded}
\alias{interval_is_left_closed}
\alias{interval_is_left_open}
\alias{interval_is_left_unbounded}
\alias{interval_is_proper}
\alias{interval_is_proper_subinterval}
\alias{interval_is_right_bounded}
\alias{interval_is_right_closed}
\alias{interval_is_right_open}
\alias{interval_is_right_unbounded}
\alias{interval_is_subinterval}
\alias{interval_is_unbounded}
\alias{interval_is_uncountable}
\alias{interval_measure}
\alias{interval_power}
\alias{interval_product}
\alias{interval_sum}
\alias{interval_symdiff}
\alias{interval_union}
\alias{is.interval}
\alias{max.interval}
\alias{mean.interval}
\alias{min.interval}
\alias{naturals}
\alias{naturals0}
\alias{range.interval}
\alias{reals}
\alias{reals2integers}
\alias{prod.interval}
\alias{sum.interval}
\alias{\%..\%}
\alias{\%<\%}
\alias{\%>\%}
\alias{\%<=\%}
\alias{\%>=\%}
\title{Intervals}
\description{Interval class for countable and uncountable numeric sets.}
\usage{
interval(l=NULL, r=l,
         bounds=c("[]", "[)", "(]", "()", "[[", "]]", "][",
                  "open", "closed", "left-open", "right-open",
                  "left-closed", "right-closed"),
         domain=NULL)

reals(l=NULL, r=NULL,
      bounds=c("[]", "[)", "(]", "()", "[[", "]]", "][",
               "open", "closed", "left-open", "right-open",
               "left-closed", "right-closed"))
integers(l=NULL, r=NULL)
naturals(l=NULL, r=NULL)
naturals0(l=NULL, r=NULL)
l \%..\% r

interval_domain(x)

as.interval(x)
integers2reals(x, min=-Inf, max=Inf)
reals2integers(x)

interval_complement(x, y=NULL)
interval_intersection(\dots)
interval_symdiff(\dots)
interval_union(\dots)

interval_difference(\dots)
interval_division(\dots)
interval_product(\dots)
interval_sum(\dots)

is.interval(x)
interval_contains_element(x, y)
interval_is_bounded(x)
interval_is_closed(x)
interval_is_countable(\dots)
interval_is_degenerate(x)
interval_is_empty(x)
interval_is_equal(x, y)
interval_is_less_than_or_equal(x, y)
interval_is_less_than(x, y)
interval_is_greater_than_or_equal(x, y)
interval_is_greater_than(x, y)
interval_is_finite(x)
interval_is_half_bounded(x)
interval_is_left_bounded(x)
interval_is_left_closed(x)
interval_is_left_open(\dots)
interval_is_left_unbounded(x)
interval_measure(x)
interval_is_proper(\dots)
interval_is_proper_subinterval(x, y)
interval_is_right_bounded(x)
interval_is_right_closed(x)
interval_is_right_open(\dots)
interval_is_right_unbounded(x)
interval_is_subinterval(x, y)
interval_is_unbounded(x)
interval_is_uncountable(x)
interval_power(x, n)
x \%<\% y
x \%>\% y
x \%<=\% y
x \%>=\% y
}
\arguments{
  \item{x}{For \code{as.interval()} and \code{is.interval()}: an \R
    object. For all other functions: an interval object (or any other \R object
    coercible to one).}
  \item{y}{An interval object (or any other \R object coercible to
    one).}
  \item{min, max}{Integers defining the range to be coerced.}
  \item{l, r}{Numeric values defining the bounds of the interval. For
    integer domains, these will be rounded.}
  \item{bounds}{Character string specifying whether the interval is
    open, closed, or left/right-open/closed. Symbolic shortcuts such as
    \code{"()"} or \code{"]["} for an open interval, etc., are also accepted.}
  \item{domain}{Character string specifying the domain of the interval:
    \code{"R"}, \code{"Z"}, \code{"N"}, and \code{"N0"} for the reals,
    integers, positive integers and non-negative integers,
    respectively. If unspecified, the domain will be guessed from the
    mode of the numeric values specifying the bounds.}
  \item{n}{Integer exponent.}
  \item{\dots}{Interval objects (or other \R objects coercible to
    interval objects).}
}
\details{
  An interval object represents a multi-interval, i.e., a union of
  disjoint, possibly unbounded (i.e., infinite)
  ranges of numbers---either the extended reals, or sequences of
  integers. The usual set operations (union, complement, intersection)
  and predicates (equality, (proper) inclusion) are implemented. If
  (numeric) sets and interval objects are mixed, the result will be an
  interval object. Some basic interval arithmetic operations
  (addition, subtraction, multiplication, division, power) as well
  mathematical functions (\code{log}, \code{log2}, \code{log10}, \code{exp},
  \code{abs}, \code{sqrt}, \code{trunc}, \code{round}, \code{floor},
  \code{ceiling}, \code{signif}, and the trigonometric functions)
  are defined. Note that the rounding functions will discretize the
  interval. 

  Coercion methods for the \code{as.numeric}, \code{as.list}, and
  \code{as.set} generics are implemented. \code{reals2integers()}
  discretizes a real multi-interval. \code{integers2reals()} returns a
  multi-interval of corresponding (degenerate) real intervals.

  The summary functions \code{min}, \code{max}, \code{range},
  \code{sum}, \code{mean} and \code{prod} are implemented and work
  on the interval bounds.

  \code{sets_options()} allows to change the style of open bounds
  according to the ISO 31-11 standard using reversed brackets instead of
  round parentheses (see examples).
}
\value{For the predicates: a logical value. For all other functions:
  an interval object.}
\seealso{
  \code{\link{set}} and \code{\link{gset}} for \emph{finite} (generalized) sets.
}
\examples{
#### * general interval constructor

interval(1,5)
interval(1,5, "[)")
interval(1,5, "()")

## ambiguous notation -> use alternative style
sets_options("openbounds", "][")
interval(1,5, "()")
sets_options("openbounds", "()")

interval(1,5, domain = "Z")
interval(1L, 5L)

## degenerate interval
interval(3)

## empty interval
interval()

#### * reals
reals()
reals(1,5)
reals(1,5,"()")
reals(1) ## half-unbounded

## (auto-)complement
!reals(1,5)
interval_complement(reals(1,5), reals(2, Inf))

## combine/c(reals(2,4), reals(3,5))
reals(2,4) | reals(3,5)

## intersection
reals(2,4) & reals(3,5)

## overlapping intervals
reals(2,4) & reals(3,5)
reals(2,4) & reals(4,5,"(]")

## non-overlapping
reals(2,4) & reals(7,8)
reals(2,4) | reals(7,8)
reals(2,4,"[)") | reals(4,5,"(]")

## degenerated cases
reals(2,4) | interval()
c(reals(2,4), set())

reals(2,4) | interval(6)
c(reals(2,4), set(6), 9)

## predicates
interval_is_empty(interval())
interval_is_degenerate(interval(4))
interval_is_bounded(reals(1,2))
interval_is_bounded(reals(1,Inf)) ## !! FALSE, because extended reals
interval_is_half_bounded(reals(1,Inf))
interval_is_left_bounded(reals(1,Inf))
interval_is_right_unbounded(reals(1,Inf))
interval_is_left_closed(reals(1,Inf))
interval_is_right_closed(reals(1,Inf)) ## !! TRUE

reals(1,2) <= reals(1,5)
reals(1,2) < reals(1,2)
reals(1,2) <= reals(1,2,"[)")
reals(1,2,"[)") < reals(1,2)

#### * integers
integers()
naturals()
naturals0()

3 \%..\% 5
integers(3, 5)
integers(3, 5) | integers(6,9)
integers(3, 5) | integers(7,9)

interval_complement(naturals(), integers())

naturals() <= naturals0()
naturals0() <= integers()

## mix reals and integers
c(reals(2,5), integers(7,9))
interval_complement(reals(2,5), integers())
interval_complement(integers(2,5), reals())

try(interval_complement(integers(), reals()), silent = TRUE)
## infeasible --> error

integers() <= reals()
reals() <= integers()

### interval arithmetic
x <- interval(2,4)
y <- interval(3,6)
x + y
x - y
x * y
x / y

## summary functions
min(x, y)
max(y)
range(y)
mean(y)
}
\keyword{math}