File: graticule.R

package info (click to toggle)
r-cran-sf 0.9-7%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,796 kB
  • sloc: cpp: 5,333; sh: 18; makefile: 2
file content (235 lines) | stat: -rw-r--r-- 8,373 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#' Compute graticules and their parameters
#'
#' Compute graticules and their parameters
#'
#' @section Use of graticules:
#'  In cartographic visualization, the use of graticules is not advised, unless
#'  the graphical output will be used for measurement or navigation, or the
#'  direction of North is important for the interpretation of the content, or
#'  the content is intended to display distortions and artifacts created by
#'  projection. Unnecessary use of graticules only adds visual clutter but
#'  little relevant information. Use of coastlines, administrative boundaries
#'  or place names permits most viewers of the output to orient themselves
#'  better than a graticule.
#'
#' @export
#' @param x object of class \code{sf}, \code{sfc} or \code{sfg} or numeric vector with bounding box given as (minx, miny, maxx, maxy).
#' @param crs object of class \code{crs}, with the display coordinate reference system
#' @param datum either an object of class \code{crs} with the coordinate reference system for the graticules, or \code{NULL} in which case a grid in the coordinate system of \code{x} is drawn, or \code{NA}, in which case an empty \code{sf} object is returned.
#' @param lon numeric; degrees east for the meridians
#' @param lat numeric; degrees north for the parallels
#' @param ndiscr integer; number of points to discretize a parallel or meridian
#' @param margin numeric; small number to trim a longlat bounding box that touches or
#'  crosses +/-180 long or +/-90 latitude.
#' @param ... ignored
#' @return an object of class \code{sf} with additional attributes describing the type
#' (E: meridian, N: parallel) degree value, label, start and end coordinates and angle;
#' see example.
#' @examples
#' library(sf)
#' library(maps)
#'
#' usa = st_as_sf(map('usa', plot = FALSE, fill = TRUE))
#' laea = st_crs("+proj=laea +lat_0=30 +lon_0=-95") # Lambert equal area
#' usa <- st_transform(usa, laea)
#'
#' bb = st_bbox(usa)
#' bbox = st_linestring(rbind(c( bb[1],bb[2]),c( bb[3],bb[2]),
#'    c( bb[3],bb[4]),c( bb[1],bb[4]),c( bb[1],bb[2])))
#'
#' g = st_graticule(usa)
#' plot(usa, xlim = 1.2 * c(-2450853.4, 2186391.9))
#' plot(g[1], add = TRUE, col = 'grey')
#' plot(bbox, add = TRUE)
#' points(g$x_start, g$y_start, col = 'red')
#' points(g$x_end, g$y_end, col = 'blue')
#'
#' invisible(lapply(seq_len(nrow(g)), function(i) {
#'	if (g$type[i] == "N" && g$x_start[i] - min(g$x_start) < 1000)
#'		text(g[i,"x_start"], g[i,"y_start"], labels = parse(text = g[i,"degree_label"]),
#'			srt = g$angle_start[i], pos = 2, cex = .7)
#'	if (g$type[i] == "E" && g$y_start[i] - min(g$y_start) < 1000)
#'		text(g[i,"x_start"], g[i,"y_start"], labels = parse(text = g[i,"degree_label"]),
#'			srt = g$angle_start[i] - 90, pos = 1, cex = .7)
#'	if (g$type[i] == "N" && g$x_end[i] - max(g$x_end) > -1000)
#'		text(g[i,"x_end"], g[i,"y_end"], labels = parse(text = g[i,"degree_label"]),
#'			srt = g$angle_end[i], pos = 4, cex = .7)
#'	if (g$type[i] == "E" && g$y_end[i] - max(g$y_end) > -1000)
#'		text(g[i,"x_end"], g[i,"y_end"], labels = parse(text = g[i,"degree_label"]),
#'			srt = g$angle_end[i] - 90, pos = 3, cex = .7)
#' }))
#' plot(usa, graticule = st_crs(4326), axes = TRUE, lon = seq(-60,-130,by=-10))
st_graticule = function(x = c(-180,-90,180,90), crs = st_crs(x),
	datum = st_crs(4326), ..., lon = NULL, lat = NULL, ndiscr = 100,
	margin = 0.001)
{
	if (missing(x)) {
		crs = datum
		if (is.null(lon))
			lon = seq(-180, 180, by = 20)
		if (is.null(lat))
			lat = seq(-80, 80, by = 20)
	}

	if (is.null(crs))
		crs = NA_crs_

	if (is.null(datum))
		datum = crs

	if (is.na(datum))
		return(st_graticule()[0,]) # empty set, but with all variables

	# Get the bounding box of the plotting space, in crs
	bb = if (inherits(x, "sf") || inherits(x, "sfc") || inherits(x, "sfg"))
		st_bbox(x)
	else
		x
	stopifnot(is.numeric(bb) && length(bb) == 4)

	if (isTRUE(st_is_longlat(crs)))
		bb = trim_bb(bb, margin)

	ls1 = st_linestring(rbind(c(bb[1],bb[2]), c(bb[3],bb[2]), c(bb[3],bb[4]),
		c(bb[1],bb[4]), c(bb[1],bb[2])))
	ls2 = st_linestring(rbind(c(bb[1],bb[2]), c(bb[3],bb[4]), c(bb[1],bb[4]),
		c(bb[3],bb[2]), c(bb[1],bb[2])))
	box = st_sfc(ls1, ls2)

	# without crs, we segmentize in planar coordinates --
	# segmentizing along great circles doesn't give parallels:
	box = st_segmentize(box, st_length(box)[1] / ndiscr)

	# and only now set the crs:
	st_crs(box) = crs

	# Now, in case we're not already in longlat, we convert to longlat:
	box_ll = if (! is.na(crs))
		st_transform(box, datum, partial = TRUE)
	else {
		datum = NA_crs_ # nocov - remove when geom_sf is on CRAN
		box             # nocov
	}

	# as in https://github.com/r-spatial/sf/issues/198 :
	# recreate, and ignore bbox_ll:
	if (any(!is.finite(st_bbox(box_ll)))) { # nocov start -- checked manually
		x = st_transform(st_graticule(datum = datum, ndiscr = ndiscr), crs)
		x$degree_label = NA_character_
		return(x)
	} # nocov end

	bb = st_bbox(box_ll)
	if (is.null(lon)) {
		lon = if (bb[3] <= 180 && bb[1] < -170 && bb[3] > 170) # global, -180,180:
			seq(-180, 180, by = 60)
		else
			pretty(bb[c(1,3)], n = 6)
	}
	if (is.null(lat))
		lat = pretty(bb[c(2,4)], n = 6)

	# sanity:
	if (isTRUE(st_is_longlat(datum))) {
		lon = if (min(lon) >= -15 && max(lon) > 195) # +- 4%
			lon[lon >= 0 & lon <= 360] # assume 0,360
		else
			lon[lon >= -180 & lon <= 180]
		lat = lat[lat > -90 & lat < 90]
	}

	# widen bb if pretty() created values outside the box_ll:
	bb = c(min(bb[1], min(lon)), min(bb[2],min(lat)), max(bb[3], max(lon)), max(bb[4], max(lat)))

	long_list <- vector(mode="list", length=length(lon))
	for (i in seq_along(long_list))
		long_list[[i]] <- st_linestring(cbind(rep(lon[i], ndiscr), seq(bb[2], bb[4], length.out=ndiscr)))

	lat_list <- vector(mode="list", length=length(lat))
	for (i in seq_along(lat_list))
		lat_list[[i]] <- st_linestring(cbind(seq(bb[1], bb[3], length.out=ndiscr), rep(lat[i], ndiscr)))

	df = data.frame(degree = c(lon, lat))
	df$type = c(rep("E", length(lon)), rep("N", length(lat)))
	df$degree_label = if (is.na(crs) || !isTRUE(st_is_longlat(datum)))
			c(format(lon), format(lat))
		else
			c(degreeLabelsEW(lon), degreeLabelsNS(lat))

	geom = st_sfc(c(long_list, lat_list), crs = datum)

	# Now we're moving the straight lines back to curves in crs:
	if (!is.na(crs))
		geom = st_transform(geom, crs)

	st_geometry(df) = geom
	st_agr(df) = "constant"

	if (! missing(x)) # cut out box:
		df = suppressMessages(st_intersection(df, st_polygonize(box[1])))

	df = st_cast(st_cast(df, "MULTILINESTRING"), "LINESTRING", warn = FALSE)
	graticule_attributes(df)
}

graticule_attributes = function(df) {
	object = st_geometry(df)

	if (nrow(df) == 0)
		return(df)

	xy = matrix(NA, nrow = length(object), ncol = 4)
	for (i in seq_along(object)) {
		pts = unclass(object[[i]])
		xy[i, 1:2] = pts[1,] # start
		xy[i, 3:4] = pts[nrow(pts),] # end
	}
	df$x_start = xy[,1]
	df$y_start = xy[,2]
	df$x_end   = xy[,3]
	df$y_end   = xy[,4]
	dxdy = do.call(rbind, lapply(object, function(x) { apply(x[1:2,], 2, diff) } ))
	df$angle_start = apply(dxdy, 1, function(x) atan2(x[2], x[1])*180/pi)
	dxdy = do.call(rbind, lapply(object,
		function(x) { n = nrow(x); apply(x[(n-1):n,], 2, diff) } ))
	df$angle_end = apply(dxdy, 1, function(x) atan2(x[2], x[1])*180/pi)
	bb = st_bbox(df)
	selE = df$type == "E" & df$y_start < min(df$y_start) + 0.001 * (bb[3] - bb[1])
	selN = df$type == "N" & df$x_start < min(df$x_start) + 0.001 * (bb[4] - bb[2])
	df$plot12 = selE | selN
	df
}

trim_bb = function(bb = c(-180, -90, 180, 90), margin, wrap=c(-180,180)) {
	stopifnot(margin > 0 && margin <= 1.0)
	fr = 1.0 - margin
	if (min(bb[c(1,3)]) >= -15. && max(bb[c(1,3)]) > 195.) { # 0-360 span:
		wrap=c(0., 360.)
		bb[1] = max(bb[1], .5 * wrap[1] * fr)
		bb[3] = min(bb[3], wrap[2] * fr)
	} else {
		bb[1] = max(bb[1], wrap[1] * fr)
		bb[3] = min(bb[3], wrap[2] * fr)
	}
	bb[2] = max(bb[2], -90. * fr)
	bb[4] = min(bb[4],  90. * fr)
	bb
}

# copied from sp:
degreeLabelsNS = function(x) {
	pos = sign(x) + 2
	dir = c("*S", "", "*N")
	paste0('"', format(abs(x), digits = 10), '"', "*degree", dir[pos])
}

degreeLabelsEW = function(x) {
	x <- ifelse(x > 180, x - 360, x)
	pos = sign(x) + 2
	if (any(x == -180))
		pos[x == -180] = 2
	if (any(x == 180))
		pos[x == 180] = 2
	dir = c("*W", "", "*E")
	paste0('"', format(abs(x), digits = 10), '"', "*degree", dir[pos])
}