1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#' @export
#' @name st_sample
st_sample = function(x, size, ...) UseMethod("st_sample")
#' sample points on or in (sets of) spatial features
#'
#' Sample points on or in (sets of) spatial features.
#' By default, returns a pre-specified number of points that is equal to
#' \code{size} (if \code{type = "random"} and \code{exact = TRUE}) or an approximation of
#' \code{size} otherwise. \code{spatstat} methods are
#' interfaced and do not use the \code{size} argument, see examples.
#'
#' The function is vectorised: it samples \code{size} points across all geometries in
#' the object if \code{size} is a single number, or the specified number of points
#' in each feature if \code{size} is a vector of integers equal in length to the geometry
#' of \code{x}.
#'
#' @param x object of class \code{sf} or \code{sfc}
#' @param size sample size(s) requested; either total size, or a numeric vector with sample sizes for each feature geometry. When sampling polygons, the returned sampling size may differ from the requested size, as the bounding box is sampled, and sampled points intersecting the polygon are returned.
#' @param warn_if_not_integer logical; if \code{FALSE} then no warning is emitted if \code{size} is not an integer
#' @param ... passed on to \link[base]{sample} for \code{multipoint} sampling, or to \code{spatstat} functions for spatstat sampling types (see details)
#' @param type character; indicates the spatial sampling type; one of \code{random}, \code{hexagonal} (triangular really), \code{regular},
#' or one of the \code{spatstat} methods such as \code{Thomas} for calling \code{spatstat::rThomas} (see Details).
#' @param exact logical; should the length of output be exactly
#' @param by_polygon logical; for \code{MULTIPOLYGON} geometries, should the effort be split by \code{POLYGON}? See https://github.com/r-spatial/sf/issues/1480https://github.com/r-spatial/sf/issues/1480
#' the same as specified by \code{size}? \code{TRUE} by default. Only applies to polygons, and
#' when \code{type = "random"}.
#' @return an \code{sfc} object containing the sampled \code{POINT} geometries
#' @details if \code{x} has dimension 2 (polygons) and geographical coordinates (long/lat), uniform random sampling on the sphere is applied, see e.g. \url{http://mathworld.wolfram.com/SpherePointPicking.html}
#'
#' For \code{regular} or \code{hexagonal} sampling of polygons, the resulting size is only an approximation.
#'
#' As parameter called \code{offset} can be passed to control ("fix") regular or hexagonal sampling: for polygons a length 2 numeric vector (by default: a random point from \code{st_bbox(x)}); for lines use a number like \code{runif(1)}.
#'
#' Sampling methods from package \code{spatstat} are interfaced (see examples), and need their own parameters to be set.
#' For instance, to use \code{spatstat::rThomas()}, set \code{type = "Thomas"}.
#' @examples
#' nc = st_read(system.file("shape/nc.shp", package="sf"))
#' p1 = st_sample(nc[1:3, ], 6)
#' p2 = st_sample(nc[1:3, ], 1:3)
#' plot(st_geometry(nc)[1:3])
#' plot(p1, add = TRUE)
#' plot(p2, add = TRUE, pch = 2)
#' x = st_sfc(st_polygon(list(rbind(c(0,0),c(90,0),c(90,90),c(0,90),c(0,0)))), crs = st_crs(4326))
#' plot(x, axes = TRUE, graticule = TRUE)
#' if (sf_extSoftVersion()["proj.4"] >= "4.9.0")
#' plot(p <- st_sample(x, 1000), add = TRUE)
#' x2 = st_transform(st_segmentize(x, 1e4), st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
#' g = st_transform(st_graticule(), st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
#' plot(x2, graticule = g)
#' if (sf_extSoftVersion()["proj.4"] >= "4.9.0") {
#' p2 = st_transform(p, st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
#' plot(p2, add = TRUE)
#' }
#' x = st_sfc(st_polygon(list(rbind(c(0,0),c(90,0),c(90,10),c(0,90),c(0,0))))) # NOT long/lat:
#' plot(x)
#' p_exact = st_sample(x, 1000, exact = TRUE)
#' p_not_exact = st_sample(x, 1000, exact = FALSE)
#' length(p_exact); length(p_not_exact)
#' plot(st_sample(x, 1000), add = TRUE)
#' x = st_sfc(st_polygon(list(rbind(c(-180,-90),c(180,-90),c(180,90),c(-180,90),c(-180,-90)))),
#' crs=st_crs(4326))
#' # FIXME:
#' #if (sf_extSoftVersion()["proj.4"] >= "4.9.0") {
#' # p = st_sample(x, 1000)
#' # st_sample(p, 3)
#' #}
#' # hexagonal:
#' sfc = st_sfc(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,0)))))
#' plot(sfc)
#' h = st_sample(sfc, 100, type = "hexagonal")
#' h1 = st_sample(sfc, 100, type = "hexagonal")
#' plot(h, add = TRUE)
#' plot(h1, col = 'red', add = TRUE)
#' c(length(h), length(h1)) # approximate!
#' pt = st_multipoint(matrix(1:20,,2))
#' ls = st_sfc(st_linestring(rbind(c(0,0),c(0,1))),
#' st_linestring(rbind(c(0,0),c(.1,0))),
#' st_linestring(rbind(c(0,1),c(.1,1))),
#' st_linestring(rbind(c(2,2),c(2,2.00001))))
#' st_sample(ls, 80)
#' plot(st_sample(ls, 80))
#' # spatstat example:
#' if (require(spatstat)) {
#' x <- sf::st_sfc(sf::st_polygon(list(rbind(c(0, 0), c(10, 0), c(10, 10), c(0, 0)))))
#' # for spatstat::rThomas(), set type = "Thomas":
#' pts <- st_sample(x, kappa = 1, mu = 10, scale = 0.1, type = "Thomas")
#' }
#' @export
#' @name st_sample
st_sample.sf = function(x, size, ...) st_sample(st_geometry(x), size, ...)
#' @export
#' @name st_sample
st_sample.sfc = function(x, size, ..., type = "random", exact = TRUE, warn_if_not_integer = TRUE,
by_polygon = FALSE) {
if (!missing(size) && warn_if_not_integer && any(size %% 1 != 0))
warning("size is not an integer")
if (!missing(size) && length(size) > 1) { # recurse:
size = rep(size, length.out = length(x))
ret = lapply(1:length(x), function(i) st_sample(x[i], size[i], type = type, exact = exact, ...))
st_set_crs(do.call(c, ret), st_crs(x))
} else {
res = switch(max(st_dimension(x)) + 1,
st_multipoints_sample(do.call(c, x), size = size, ..., type = type),
st_ll_sample(st_cast(x, "LINESTRING"), size = size, ..., type = type),
st_poly_sample(x, size = size, ..., type = type, by_polygon = by_polygon))
if (exact & type == "random" & all(st_geometry_type(res) == "POINT")) {
diff = size - length(res)
if (diff > 0) { # too few points
res_additional = st_sample_exact(x = x, size = diff, ...,
type = type, by_polygon = by_polygon)
res = c(res, res_additional)
} else if (diff < 0) { # too many points
res = res[1:size]
}
}
res
}
}
#' @export
#' @name st_sample
st_sample.sfg = function(x, size, ...) {
st_sample(st_geometry(x), size, ...)
}
st_poly_sample = function(x, size, ..., type = "random",
offset = st_sample(st_as_sfc(st_bbox(x)), 1)[[1]],
by_polygon = FALSE) {
if (by_polygon && inherits(x, "sfc_MULTIPOLYGON")) { # recurse into polygons:
sum_a = units::drop_units(sum(st_area(x)))
x = lapply(suppressWarnings(st_cast(st_geometry(x), "POLYGON")), st_sfc, crs = st_crs(x))
a = sapply(x, st_area)
ret = mapply(st_poly_sample, x, size = size * a / sum_a, type = type, ...)
return(do.call(c, ret))
}
if (type %in% c("hexagonal", "regular", "random")) {
if (isTRUE(st_is_longlat(x))) {
if (type == "regular")
message_longlat("st_sample")
if (type == "hexagonal")
stop("hexagonal sampling on geographic coordinates not supported; consider projecting first")
}
a0 = as.numeric(st_area(st_make_grid(x, n = c(1,1))))
a1 = as.numeric(sum(st_area(x)))
# st_polygon(list(rbind(c(-180,-90),c(180,-90),c(180,90),c(-180,90),c(-180,-90))))
# for instance has 0 st_area
if (is.finite(a0) && is.finite(a1) && a0 > a0 * 0.0 && a1 > a1 * 0.0) {
r = round(size * a0 / a1)
size = if (r == 0)
rbinom(1, 1, size * a0 / a1)
else
r
}
bb = st_bbox(x)
pts = if (type == "hexagonal") {
dx = sqrt(a0 / size / (sqrt(3)/2))
hex_grid_points(x, pt = offset, dx = dx)
} else if (type == "regular") {
dx = as.numeric(sqrt(a0 / size))
offset = c((offset[1] - bb["xmin"]) %% dx,
(offset[2] - bb["ymin"]) %% dx) + bb[c("xmin", "ymin")]
n = c(round((bb["xmax"] - offset[1])/dx), round((bb["ymax"] - offset[2])/dx))
st_make_grid(x, cellsize = c(dx, dx), offset = offset, n = n, what = "corners")
} else if (type == "random") {
lon = runif(size, bb[1], bb[3])
lat = if (isTRUE(st_is_longlat(x))) { # sampling on the sphere:
toRad = pi/180
lat0 = (sin(bb[2] * toRad) + 1)/2
lat1 = (sin(bb[4] * toRad) + 1)/2
y = runif(size, lat0, lat1)
asin(2 * y - 1) / toRad # http://mathworld.wolfram.com/SpherePointPicking.html
} else
runif(size, bb[2], bb[4])
m = cbind(lon, lat)
st_sfc(lapply(seq_len(nrow(m)), function(i) st_point(m[i,])), crs = st_crs(x))
}
pts[x]
} else { # try to go into spatstat
if (!requireNamespace("spatstat", quietly = TRUE))
stop("package spatstat required, please install it first")
spatstat_fun = try(get(paste0("r", type), asNamespace("spatstat")), silent = TRUE)
if (inherits(spatstat_fun, "try-error"))
stop(paste0("r", type), " is not an exported function from spatstat.")
pts = try(spatstat_fun(..., win = spatstat::as.owin(x)), silent = TRUE)
if (inherits(pts, "try-error"))
stop("The spatstat function ", paste0("r", type),
" did not return a valid result. Consult the help file.\n",
"Error message from spatstat:\n", pts)
st_as_sf(pts)[-1,]
}
}
st_multipoints_sample = function(x, size, ..., type = "random") {
if (!inherits(x, "MULTIPOINT"))
stop("points sampling only implemented for MULTIPOINT; use sample to sample individual features", call.=FALSE)
m = unclass(x)
st_sfc(st_multipoint(m[sample(nrow(m), size, ...),]), crs = st_crs(x))
}
st_ll_sample = function (x, size, ..., type = "random", offset = runif(1)) {
crs = st_crs(x)
if (isTRUE(st_is_longlat(x))) {
message_longlat("st_sample")
st_crs(x) = NA_crs_
}
l = st_length(x)
if (inherits(l, "units"))
l = drop_units(l)
if (type == "random") {
d = runif(size, 0, sum(l))
} else if (type == "regular") {
d = ((1:size) - (1. - (offset %% 1)))/size * sum(l)
} else {
stop(paste("sampling type", type, "not available for LINESTRING")) # nocov
}
lcs = c(0, cumsum(l))
if (sum(l) == 0) {
grp = list(0) # nocov
message("line is of length zero, only one point is sampled") # nocov
} else {
grp = split(d, cut(d, lcs, include.lowest = TRUE))
grp = lapply(seq_along(x), function(i) grp[[i]] - lcs[i])
}
st_sfc(CPL_gdal_linestring_sample(x, grp), crs = crs)
}
### return points on a triangular grid that
## - covers a bounding box st_bbox(obj)
## - contains pt
## - has x spacing dx: the shortest distance between x coordinates with identical y coordinate
hex_grid_points = function(obj, pt, dx) {
bb = st_bbox(obj)
dy = sqrt(3) * dx / 2
xlim = bb[c("xmin", "xmax")]
ylim = bb[c("ymin", "ymax")]
offset = c(x = (pt[1] - xlim[1]) %% dx, y = (pt[2] - ylim[1]) %% (2 * dy))
x = seq(xlim[1] - dx, xlim[2] + dx, dx) + offset[1]
y = seq(ylim[1] - 2 * dy, ylim[2] + 2 * dy, dy) + offset[2]
y <- rep(y, each = length(x))
x <- rep(c(x, x + dx / 2), length.out = length(y))
xy = cbind(x, y)[x >= xlim[1] & x <= xlim[2] & y >= ylim[1] & y <= ylim[2], ]
st_sfc(lapply(seq_len(nrow(xy)), function(i) st_point(xy[i,])), crs = st_crs(bb))
}
st_sample_exact = function(x, size, ..., type, by_polygon) {
random_pt = st_sample(x = x, size = size, ..., type = type, exact = FALSE)
while (length(random_pt) < size) {
diff = size - length(random_pt)
random_pt_new = st_sample(x, size = diff, ..., type, exact = FALSE, by_polygon = by_polygon)
random_pt = c(random_pt, random_pt_new)
}
if(length(random_pt) > size) {
random_pt = random_pt[1:size]
}
random_pt
}
|