1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
## dplyr methods:
#group_map.sf <- function(.tbl, .f, ...) {
# st_as_sf(NextMethod()) # nocov
#}
# This is currently only used in `bind_rows()` and `bind_cols()`
# because sf overrides all default implementations
dplyr_reconstruct.sf = function(data, template) {
sfc_name = attr(template, "sf_column")
if (inherits(template, "tbl_df"))
data = dplyr::as_tibble(data)
# Return a bare data frame is the geometry column is no longer there
if (!sfc_name %in% names(data))
return(data)
prec = st_precision(template)
crs = st_crs(template)
st_as_sf(
data,
sf_column_name = sfc_name,
crs = crs,
precision = prec
)
}
group_split.sf <- function(.tbl, ..., .keep = TRUE) {
class(.tbl) = setdiff(class(.tbl), "sf")
lapply(dplyr::group_split(.tbl, ..., .keep = .keep), st_as_sf)
}
#' Tidyverse methods for sf objects (remove .sf suffix!)
#'
#' Tidyverse methods for sf objects. Geometries are sticky, use \link{as.data.frame} to let \code{dplyr}'s own methods drop them. Use these methods without the .sf suffix and after loading the tidyverse package with the generic (or after loading package tidyverse).
#' @param .data data object of class \link{sf}
#' @param .dots see corresponding function in package \code{dplyr}
#' @param ... other arguments
#' @name tidyverse
#' @examples
#' library(dplyr)
#' nc = st_read(system.file("shape/nc.shp", package="sf"))
#' nc %>% filter(AREA > .1) %>% plot()
filter.sf <- function(.data, ..., .dots) {
agr = st_agr(.data)
class(.data) <- setdiff(class(.data), "sf")
.re_sf(NextMethod(), sf_column_name = attr(.data, "sf_column"), agr)
}
#' @name tidyverse
#' @examples
#' # plot 10 smallest counties in grey:
#' st_geometry(nc) %>% plot()
#' nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
#' title("the ten counties with smallest area")
arrange.sf <- function(.data, ..., .dots) {
sf_column_name = attr(.data, "sf_column")
class(.data) = setdiff(class(.data), "sf")
st_as_sf(NextMethod(), sf_column_name = sf_column_name)
}
#' @name tidyverse
#' @param add see corresponding function in dplyr
#' @examples
#' nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
#' nc %>% group_by(area_cl) %>% class()
group_by.sf <- function(.data, ..., add = FALSE) {
sf_column_name = attr(.data, "sf_column")
class(.data) <- setdiff(class(.data), "sf")
st_as_sf(NextMethod(), sf_column_name = sf_column_name)
}
#' @name tidyverse
ungroup.sf <- function(x, ...) {
sf_column_name = attr(x, "sf_column")
class(x) <- setdiff(class(x), "sf")
st_as_sf(NextMethod(), sf_column_name = sf_column_name)
}
#' @name tidyverse
rowwise.sf <- function(x, ...) {
sf_column_name = attr(x, "sf_column")
class(x) <- setdiff(class(x), "sf")
st_as_sf(NextMethod(), sf_column_name = sf_column_name)
}
.re_sf = function(x, sf_column_name, agr, geom = NULL) {
stopifnot(!inherits(x, "sf"), !missing(sf_column_name), !missing(agr))
# non-geom attribute names
att = names(x)[!sapply(x, inherits, what = "sfc")]
agr = setNames(agr[att], att) # NA's new columns
if (!is.null(geom)) {
stopifnot(length(geom) == nrow(x))
x[[ sf_column_name ]] = geom
}
structure(x,
sf_column = sf_column_name,
agr = agr,
class = c("sf", class(x)))
}
#' @name tidyverse
#' @examples
#' nc2 <- nc %>% mutate(area10 = AREA/10)
mutate.sf <- function(.data, ..., .dots) {
#st_as_sf(NextMethod(), sf_column_name = attr(.data, "sf_column"))
agr = st_agr(.data)
sf_column_name = attr(.data, "sf_column")
class(.data) <- setdiff(class(.data), "sf")
.re_sf(NextMethod(), sf_column_name = sf_column_name, agr)
}
#' @name tidyverse
#' @examples
#' nc %>% transmute(AREA = AREA/10, geometry = geometry) %>% class()
#' nc %>% transmute(AREA = AREA/10) %>% class()
transmute.sf <- function(.data, ..., .dots) {
sf_column_name = attr(.data, "sf_column")
agr = st_agr(.data)
geom = st_geometry(.data)
class(.data) = setdiff(class(.data), "sf")
.re_sf(NextMethod(), sf_column_name = sf_column_name, agr, geom)
}
#' @name tidyverse
#' @examples
#' nc %>% select(SID74, SID79) %>% names()
#' nc %>% select(SID74, SID79, geometry) %>% names()
#' nc %>% select(SID74, SID79) %>% class()
#' nc %>% select(SID74, SID79, geometry) %>% class()
#' @details \code{select} keeps the geometry regardless whether it is selected or not; to deselect it, first pipe through \code{as.data.frame} to let dplyr's own \code{select} drop it.
select.sf <- function(.data, ...) {
if (!requireNamespace("tidyselect", quietly = TRUE))
stop("tidyselect required: install that first") # nocov
loc = tidyselect::eval_select(quote(c(...)), .data)
sf_column = attr(.data, "sf_column")
sf_column_loc = match(sf_column, names(.data))
if (length(sf_column_loc) != 1 || is.na(sf_column_loc))
stop("internal error: can't find sf column") # nocov
agr = st_agr(.data)
vars = names(.data)[setdiff(loc, sf_column_loc)]
sf_column_loc_loc = match(sf_column_loc, loc)
if (is.na(sf_column_loc_loc)) {
# The sf column was subsetted out, select it back in
new_agr = setNames(agr[vars], names(loc))
loc = c(loc, sf_column_loc)
names(loc)[[length(loc)]] = sf_column
} else {
# The sf column was not subsetted out but it might have been renamed
sf_column = names(loc[sf_column_loc_loc])
new_agr = setNames(agr[vars], setdiff(names(loc), sf_column))
}
ret = .data
class(ret) = setdiff(class(ret), "sf")
ret = ret[loc]
names(ret) = names(loc)
st_set_agr(st_as_sf(ret, sf_column_name = sf_column), new_agr)
}
#' @name tidyverse
#' @examples
#' nc2 <- nc %>% rename(area = AREA)
rename.sf <- function(.data, ...) {
if (!requireNamespace("tidyselect", quietly = TRUE))
stop("tidyselect required: install that first") # nocov
loc = tidyselect::eval_rename(quote(c(...)), .data)
sf_column = attr(.data, "sf_column")
sf_column_loc = match(sf_column, names(.data))
if (length(sf_column_loc) != 1 || is.na(sf_column_loc))
stop("internal error: can't find sf column") # nocov
agr = st_agr(.data)
agr_loc = match(names(agr), setdiff(names(.data), sf_column))
if (anyNA(agr_loc))
stop("internal error: can't find `agr` columns") # nocov
vars_loc = loc[loc %in% agr_loc]
names(agr)[vars_loc] = names(vars_loc)
sf_column_loc_loc = match(sf_column_loc, loc)
if (!is.na(sf_column_loc_loc))
sf_column = names(loc[sf_column_loc_loc])
ret = .data
class(ret) = setdiff(class(ret), "sf")
names(ret)[loc] = names(loc)
st_set_agr(st_as_sf(ret, sf_column_name = sf_column), agr)
}
#' @name tidyverse
#' @examples
#' nc %>% slice(1:2)
slice.sf <- function(.data, ..., .dots) {
class(.data) <- setdiff(class(.data), "sf")
sf_column <- attr(.data, "sf_column")
st_as_sf(NextMethod(), sf_column_name = sf_column)
}
#' @name tidyverse
#' @aliases summarise
#' @param do_union logical; in case \code{summary} does not create a geometry column, should geometries be created by unioning using \link{st_union}, or simply by combining using \link{st_combine}? Using \link{st_union} resolves internal boundaries, but in case of unioning points, this will likely change the order of the points; see Details.
#' @param is_coverage logical; if \code{do_union} is \code{TRUE}, use an optimized algorithm for features that form a polygonal coverage (have no overlaps)
#' @return an object of class \link{sf}
#' @details
#' In case one or more of the arguments (expressions) in the \code{summarise} call creates a geometry list-column, the first of these will be the (active) geometry of the returned object. If this is not the case, a geometry column is created, depending on the value of \code{do_union}.
#'
#' In case \code{do_union} is \code{FALSE}, \code{summarise} will simply combine geometries using \link{c.sfg}. When polygons sharing a boundary are combined, this leads to geometries that are invalid; see for instance \url{https://github.com/r-spatial/sf/issues/681}.
#' @examples
#' nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
#' nc.g <- nc %>% group_by(area_cl)
#' nc.g %>% summarise(mean(AREA))
#' nc.g %>% summarise(mean(AREA)) %>% plot(col = grey(3:6 / 7))
#' nc %>% as.data.frame %>% summarise(mean(AREA))
summarise.sf <- function(.data, ..., .dots, do_union = TRUE, is_coverage = FALSE) {
sf_column = attr(.data, "sf_column")
precision = st_precision(.data)
crs = st_crs(.data)
geom = st_geometry(.data)
class(.data) = setdiff(class(.data), "sf")
ret = NextMethod()
if (!missing(do_union))
ret$do_union = NULL
if (! any(sapply(ret, inherits, what = "sfc"))) {
geom = if (inherits(.data, "grouped_df") || inherits(.data, "grouped_dt")) {
if (!requireNamespace("dplyr", quietly = TRUE))
stop("dplyr required: install that first") # nocov
i = dplyr::group_indices(.data)
# geom = st_geometry(.data)
geom = if (do_union)
lapply(sort(unique(i)), function(x) st_union(geom[i == x], is_coverage = is_coverage))
else
lapply(sort(unique(i)), function(x) st_combine(geom[i == x]))
geom = unlist(geom, recursive = FALSE)
if (is.null(geom))
geom = list() #676 #nocov
do.call(st_sfc, c(geom, crs = list(crs), precision = precision))
} else { # single group:
if (do_union)
st_union(geom, is_coverage = is_coverage)
else
st_combine(geom)
}
ret[[ sf_column ]] = geom
}
# need to re-sort out the geometry column class now:
st_as_sf(structure(ret, sf_column = NULL))
}
#' @name tidyverse
#' @param .keep_all see corresponding function in dplyr
#' @examples
#' nc[c(1:100, 1:10), ] %>% distinct() %>% nrow()
#' @details \code{distinct} gives distinct records for which all attributes and geometries are distinct; \link{st_equals} is used to find out which geometries are distinct.
distinct.sf <- function(.data, ..., .keep_all = FALSE) {
sf_column = attr(.data, "sf_column")
geom = st_geometry(.data)
eq = sapply(st_equals(.data), head, n = 1)
empties = which(lengths(eq) == 0)
eq[ empties ] = empties[1] # first empty record
.data[[ sf_column ]] = unlist(eq)
class(.data) = setdiff(class(.data), "sf")
if (!requireNamespace("dplyr", quietly = TRUE))
stop("dplyr required: install that first") # nocov
if (!requireNamespace("rlang", quietly = TRUE))
stop("rlang required: install first?")
.data = dplyr::distinct(.data, ..., !! rlang::sym(sf_column), .keep_all = .keep_all)
.data[[ sf_column ]] = geom[ .data[[ sf_column ]] ]
st_as_sf(.data)
}
## tidyr methods:
#' @name tidyverse
#' @param data see original function docs
#' @param key see original function docs
#' @param value see original function docs
#' @param na.rm see original function docs
#' @param factor_key see original function docs
#' @examples
#' library(tidyr)
#' nc %>% select(SID74, SID79) %>% gather("VAR", "SID", -geometry) %>% summary()
gather.sf <- function(data, key, value, ..., na.rm = FALSE, convert = FALSE, factor_key = FALSE) {
if (! requireNamespace("rlang", quietly = TRUE))
stop("rlang required: install first?")
key = rlang::enquo(key)
value = rlang::enquo(value)
if (!requireNamespace("tidyr", quietly = TRUE))
stop("tidyr required: install first?")
class(data) <- setdiff(class(data), "sf")
st_as_sf(tidyr::gather(data, !!key, !!value, ...,
na.rm = na.rm, convert = convert, factor_key = factor_key),
sf_column_name = attr(data, "sf_column"))
}
#' @name tidyverse
#' @param fill see original function docs
#' @param drop see original function docs
#' @examples
#' library(tidyr)
#' nc$row = 1:100 # needed for spread to work
#' nc %>% select(SID74, SID79, geometry, row) %>%
#' gather("VAR", "SID", -geometry, -row) %>%
#' spread(VAR, SID) %>% head()
spread.sf <- function(data, key, value, fill = NA, convert = FALSE, drop = TRUE,
sep = NULL) {
if (!requireNamespace("rlang", quietly = TRUE))
stop("rlang required: install first?")
key = rlang::enquo(key)
value = rlang::enquo(value)
class(data) <- setdiff(class(data), "sf")
st_as_sf(tidyr::spread(data, !!key, !!value, fill = fill, convert = convert,
drop = drop, sep = sep), sf_column_name = attr(data, "sf_column"))
}
#' @name tidyverse
#' @param tbl see original function docs
#' @param size see original function docs
#' @param replace see original function docs
#' @param weight see original function docs
#' @param .env see original function docs
sample_n.sf <- function(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame()) {
st_sf(NextMethod(), sf_column_name = attr(tbl, "sf_column"))
}
#' @name tidyverse
sample_frac.sf <- function(tbl, size = 1, replace = FALSE, weight = NULL, .env = parent.frame()) {
st_sf(NextMethod(), sf_column_name = attr(tbl, "sf_column"))
}
#' @name tidyverse
#' @examples
#' storms.sf = st_as_sf(storms, coords = c("long", "lat"), crs = 4326)
#' x <- storms.sf %>% group_by(name, year) %>% nest
#' trs = lapply(x$data, function(tr) st_cast(st_combine(tr), "LINESTRING")[[1]]) %>%
#' st_sfc(crs = 4326)
#' trs.sf = st_sf(x[,1:2], trs)
#' plot(trs.sf["year"], axes = TRUE)
#' @details \code{nest} assumes that a simple feature geometry list-column was among the columns that were nested.
nest.sf = function (.data, ...) {
if (!requireNamespace("rlang", quietly = TRUE))
stop("rlang required: install first?")
if (!requireNamespace("tidyr", quietly = TRUE))
stop("tidyr required: install first?")
class(.data) <- setdiff(class(.data), "sf")
ret = tidyr::nest(.data, ...)
lst = which(sapply(ret, inherits, "list"))[1]
# re-sf:
ret[[lst]] = lapply(ret[[lst]], st_as_sf, sf_column_name = attr(.data, "sf_column"))
ret
}
#' @name tidyverse
#' @param col see \link[tidyr]{separate}
#' @param into see \link[tidyr]{separate}
#' @param remove see \link[tidyr]{separate}
#' @param extra see \link[tidyr]{separate}
separate.sf = function(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE,
convert = FALSE, extra = "warn", fill = "warn", ...) {
if (!requireNamespace("rlang", quietly = TRUE))
stop("rlang required: install first?")
col = rlang::enquo(col)
if (!requireNamespace("tidyr", quietly = TRUE))
stop("tidyr required: install first?")
class(data) <- setdiff(class(data), "sf")
st_as_sf(tidyr::separate(data, !!col, into = into,
sep = sep, remove = remove, convert = convert, extra = extra, fill = fill, ...),
sf_column_name = attr(data, "sf_column"))
}
#' @name tidyverse
#' @param sep see \link[tidyr]{separate_rows}
#' @param convert see \link[tidyr]{separate_rows}
separate_rows.sf <- function(data, ..., sep = "[^[:alnum:]]+", convert = FALSE) {
if (!requireNamespace("tidyr", quietly = TRUE))
stop("tidyr required: install first?")
class(data) <- setdiff(class(data), "sf")
ret = tidyr::separate_rows(data, ..., sep = sep, convert = convert)
st_as_sf(ret, sf_column_name = attr(data, "sf_column"))
}
#' @name tidyverse
unite.sf <- function(data, col, ..., sep = "_", remove = TRUE) {
class(data) <- setdiff(class(data), "sf")
if (!requireNamespace("rlang", quietly = TRUE))
stop("rlang required: install first?")
col = rlang::enquo(col)
st_as_sf(tidyr::unite(data, !!col, ..., sep = sep, remove = remove),
sf_column_name = attr(data, "sf_column"))
}
#' @name tidyverse
#' @param .preserve see \link[tidyr:nest]{unnest}
unnest.sf = function(data, ..., .preserve = NULL) {
# nocov start
sf_column_name = attr(data, "sf_column", exact = TRUE)
if (!requireNamespace("tidyr", quietly = TRUE))
stop("unnest requires tidyr; install that first")
class(data) = setdiff(class(data), "sf")
st_sf(NextMethod(), sf_column_name = sf_column_name)
# nocov end
}
## tibble methods:
#' Summarize simple feature type for tibble
#'
#' Summarize simple feature type for tibble
#' @param x object of class sfc
#' @param ... ignored
#' @name tibble
#' @details see \link[pillar]{type_sum}
type_sum.sfc <- function(x, ...) {
cls = substring(class(x)[1], 5)
if (is.na(st_is_longlat(x)))
cls
else
paste0(cls, " [", enc2utf8(as.character(units(st_crs(x, parameters = TRUE)$ud_unit))), "]")
}
#' Summarize simple feature item for tibble
#'
#' Summarize simple feature item for tibble
#' @name tibble
obj_sum.sfc <- function(x) {
vapply(x, function(sfg) format(sfg, width = 15L), "")
}
#' @name tibble
pillar_shaft.sfc <- function(x, ...) {
digits = options("pillar.sigfig")$pillar.sigfig
if (is.null(digits))
digits = options("digits")$digits
out <- format(x, width = 100, digits = digits, ...)
if (!inherits(x, "sfc_GEOMETRY") && !inherits(x, "sfc_GEOMETRYCOLLECTION"))
out <- sub("[A-Z]+ ", "", out)
pillar::new_pillar_shaft_simple(out, align = "right", min_width = 25)
}
#nocov start
register_all_s3_methods = function() {
has_dplyr_1.0 =
requireNamespace("dplyr", quietly = TRUE) &&
utils::packageVersion("dplyr") >= "0.8.99.9000"
if (has_dplyr_1.0)
register_s3_method("dplyr", "dplyr_reconstruct", "sf")
register_s3_method("dplyr", "anti_join", "sf")
register_s3_method("dplyr", "arrange", "sf")
register_s3_method("dplyr", "distinct", "sf")
register_s3_method("dplyr", "filter", "sf")
register_s3_method("dplyr", "full_join", "sf")
register_s3_method("dplyr", "group_by", "sf")
# register_s3_method("dplyr", "group_map", "sf")
register_s3_method("dplyr", "group_split", "sf")
register_s3_method("dplyr", "inner_join", "sf")
register_s3_method("dplyr", "left_join", "sf")
register_s3_method("dplyr", "mutate", "sf")
register_s3_method("dplyr", "rename", "sf")
register_s3_method("dplyr", "right_join", "sf")
register_s3_method("dplyr", "rowwise", "sf")
register_s3_method("dplyr", "sample_frac", "sf")
register_s3_method("dplyr", "sample_n", "sf")
register_s3_method("dplyr", "select", "sf")
register_s3_method("dplyr", "semi_join", "sf")
register_s3_method("dplyr", "slice", "sf")
register_s3_method("dplyr", "summarise", "sf")
register_s3_method("dplyr", "transmute", "sf")
register_s3_method("dplyr", "ungroup", "sf")
register_s3_method("tidyr", "gather", "sf")
register_s3_method("tidyr", "spread", "sf")
register_s3_method("tidyr", "nest", "sf")
register_s3_method("tidyr", "separate", "sf")
register_s3_method("tidyr", "separate_rows", "sf")
register_s3_method("tidyr", "unite", "sf")
register_s3_method("tidyr", "unnest", "sf")
register_s3_method("pillar", "obj_sum", "sfc")
register_s3_method("pillar", "type_sum", "sfc")
register_s3_method("pillar", "pillar_shaft", "sfc")
register_s3_method("spatstat", "as.ppp", "sfc")
register_s3_method("spatstat", "as.ppp", "sf")
register_s3_method("spatstat", "as.owin", "POLYGON")
register_s3_method("spatstat", "as.owin", "MULTIPOLYGON")
register_s3_method("spatstat", "as.owin", "sfc_POLYGON")
register_s3_method("spatstat", "as.owin", "sfc_MULTIPOLYGON")
register_s3_method("spatstat", "as.owin", "sfc")
register_s3_method("spatstat", "as.owin", "sf")
register_s3_method("spatstat", "as.psp", "LINESTRING")
register_s3_method("spatstat", "as.psp", "MULTILINESTRING")
register_s3_method("spatstat", "as.psp", "sfc_MULTILINESTRING")
register_s3_method("spatstat", "as.psp", "sfc")
register_s3_method("spatstat", "as.psp", "sf")
register_s3_method("wk", "as_wkb", "sf")
register_s3_method("wk", "as_wkb", "sfc")
register_s3_method("wk", "as_wkb", "sfg")
register_vctrs_methods()
}
# from: https://github.com/tidyverse/hms/blob/master/R/zzz.R
# Thu Apr 19 10:53:24 CEST 2018
register_s3_method <- function(pkg, generic, class, fun = NULL) {
stopifnot(is.character(pkg), length(pkg) == 1)
stopifnot(is.character(generic), length(generic) == 1)
stopifnot(is.character(class), length(class) == 1)
if (is.null(fun)) {
fun <- get(paste0(generic, ".", class), envir = parent.frame())
} else {
stopifnot(is.function(fun))
}
if (pkg %in% loadedNamespaces()) {
registerS3method(generic, class, fun, envir = asNamespace(pkg))
}
# Always register hook in case package is later unloaded & reloaded
setHook(
packageEvent(pkg, "onLoad"),
function(...) {
registerS3method(generic, class, fun, envir = asNamespace(pkg))
}
)
}
# nocov end
|