1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> suppressPackageStartupMessages(library(sf))
>
> nc = st_read(system.file("shape/nc.shp", package="sf"), "nc", crs = 4267,
+ agr = c(AREA = "aggregate", PERIMETER = "aggregate", CNTY_ = "identity",
+ CNTY_ID = "identity", NAME = "identity", FIPS = "identity", FIPSNO = "identity",
+ CRESS_ID = "identity", BIR74 = "aggregate", SID74 = "aggregate", NWBIR74 = "aggregate",
+ BIR79 = "aggregate", SID79 = "aggregate", NWBIR79 = "aggregate"), quiet = TRUE)
>
> st_is_valid(nc)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
>
> st_is_simple(nc)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
>
> nc_tr = st_transform(nc, 3857)
>
> x = st_buffer(nc_tr, 1000)
>
> x = st_boundary(nc)
>
> x = st_convex_hull(nc)
>
> x = st_simplify(nc_tr, dTolerance = 1e4)
>
> x = st_simplify(nc_tr, preserveTopology = TRUE)
>
> if (sf:::CPL_geos_version() >= "3.4.0")
+ x = st_triangulate(nc_tr)
>
> mls = st_multilinestring(list(matrix(c(0,0,0,1,1,1,0,0),,2,byrow=TRUE)))
> x = st_polygonize(mls)
>
> x = st_segmentize(nc_tr, 5e4)
>
> try(x <- st_segmentize(nc_tr, -0.1))
Error in CPL_gdal_segmentize(x, dfMaxLength) :
argument dfMaxLength should be positive
>
> x = st_centroid(nc_tr)
Warning message:
In st_centroid.sf(nc_tr) :
st_centroid assumes attributes are constant over geometries of x
> x = st_point_on_surface(nc_tr)
Warning message:
In st_point_on_surface.sf(nc_tr) :
st_point_on_surface assumes attributes are constant over geometries of x
>
> a = nc[1:5,]
> b = nc[4:10,]
>
> x <- st_intersection(a[1,] ,b)
although coordinates are longitude/latitude, st_intersection assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> u = st_union(b)
>
> x <- st_intersection(st_geometry(a), st_geometry(u))
although coordinates are longitude/latitude, st_intersection assumes that they are planar
>
> x = st_union(a[1,], b)
although coordinates are longitude/latitude, st_union assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> x = st_union(a, st_union(b))
although coordinates are longitude/latitude, st_union assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> x = st_difference(a[1,], b)
although coordinates are longitude/latitude, st_difference assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> x = st_difference(a, st_union(b))
although coordinates are longitude/latitude, st_difference assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> x = st_sym_difference(a[1,], b)
although coordinates are longitude/latitude, st_sym_difference assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> x = st_sym_difference(a, st_union(b))
although coordinates are longitude/latitude, st_sym_difference assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
>
> x = st_drivers()
> #cat(paste("GDAL has", nrow(x), "drivers\n"))
>
> # GEOS ops:
>
> st_relate(a, b)
although coordinates are longitude/latitude, st_relate assumes that they are planar
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212"
[2,] "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212"
[3,] "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212" "FF2FF1212"
[4,] "2FFF1FFF2" "FF2FF1212" "FF2FF1212" "FF2F11212" "FF2FF1212" "FF2FF1212"
[5,] "FF2FF1212" "2FFF1FFF2" "FF2F11212" "FF2FF1212" "FF2FF1212" "FF2F11212"
[,7]
[1,] "FF2FF1212"
[2,] "FF2FF1212"
[3,] "FF2F11212"
[4,] "FF2FF1212"
[5,] "FF2FF1212"
>
> st_disjoint(a, b)
although coordinates are longitude/latitude, st_intersects assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `disjoint'
1: 1, 2, 3, 4, 5, 6, 7
2: 1, 2, 3, 4, 5, 6, 7
3: 1, 2, 3, 4, 5, 6
4: 2, 3, 5, 6, 7
5: 1, 4, 5, 7
>
> st_touches(a, b)
although coordinates are longitude/latitude, st_touches assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `touches'
1: (empty)
2: (empty)
3: 7
4: 4
5: 3, 6
>
> st_crosses(a, b)
although coordinates are longitude/latitude, st_crosses assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `crosses'
1: (empty)
2: (empty)
3: (empty)
4: (empty)
5: (empty)
>
> st_within(a, b)
although coordinates are longitude/latitude, st_within assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `within'
1: (empty)
2: (empty)
3: (empty)
4: 1
5: 2
>
> st_contains(a, b)
although coordinates are longitude/latitude, st_contains assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `contains'
1: (empty)
2: (empty)
3: (empty)
4: 1
5: 2
>
> st_overlaps(a, b)
although coordinates are longitude/latitude, st_overlaps assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `overlaps'
1: (empty)
2: (empty)
3: (empty)
4: (empty)
5: (empty)
>
> st_equals(a, b)
Sparse geometry binary predicate list of length 5, where the predicate was `equals'
1: (empty)
2: (empty)
3: (empty)
4: 1
5: 2
>
> st_covers(a, b)
although coordinates are longitude/latitude, st_covers assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `covers'
1: (empty)
2: (empty)
3: (empty)
4: 1
5: 2
>
> st_covered_by(a, b)
although coordinates are longitude/latitude, st_covered_by assumes that they are planar
Sparse geometry binary predicate list of length 5, where the predicate was `covered_by'
1: (empty)
2: (empty)
3: (empty)
4: 1
5: 2
>
> st_equals_exact(a, b, 0.01)
Sparse geometry binary predicate list of length 5, where the predicate was `equals_exact'
1: (empty)
2: (empty)
3: (empty)
4: 1
5: 2
>
> # st_is_within_distance(a, b, 2)
>
> st_geometry_type(st_sfc(st_point(1:2), st_linestring(matrix(1:4,2,2))))
[1] POINT LINESTRING
18 Levels: GEOMETRY POINT LINESTRING POLYGON MULTIPOINT ... TRIANGLE
>
> st_geometry_type(st_sfc(st_point(1:2), st_linestring(matrix(1:4,2,2))), by_geometry = FALSE)
[1] GEOMETRY
18 Levels: GEOMETRY POINT LINESTRING POLYGON MULTIPOINT ... TRIANGLE
>
> st_zm(list(st_point(1:3), st_linestring(matrix(1:6,2,3))))
[[1]]
POINT (1 2)
[[2]]
LINESTRING (1 3, 2 4)
>
> st_zm(list(st_point(1:2), st_linestring(matrix(1:6,3,2))), add = TRUE, "Z")
[[1]]
POINT (1 2)
[[2]]
LINESTRING (1 4, 2 5, 3 6)
>
> st_transform(st_sfc(st_point(c(0,0)), crs=4326), st_crs("+proj=geocent"))[[1]]
POINT Z (6378137 0 0)
>
> cbind(st_area(nc_tr[1:5,]), a$AREA)
[,1] [,2]
[1,] 1760244967 0.114
[2,] 946435667 0.061
[3,] 2202248253 0.143
[4,] 1074351919 0.070
[5,] 2352539533 0.153
>
> st_area(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))))
[1] 1
>
> st_length(st_linestring(rbind(c(0,0),c(0,1))))
[1] 1
>
> st_length(st_multilinestring(list(rbind(c(0,0),c(0,1)))))
[1] 1
>
> try(st_length(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0))))))
[1] 0
>
> st_area(st_multilinestring(list(rbind(c(0,0),c(0,1)))))
[1] 0
>
> # adds the (0.5 0.5) node:
> st_union(st_multilinestring(list(rbind(c(0,0),c(1,1)), rbind(c(0,1), c(1,0)))))
MULTILINESTRING ((0 0, 1 1), (0 1, 1 0))
>
> p1 = st_point(c(7,52))
> p2 = st_point(c(-30,20))
> sfc = st_sfc(p1, p2)
> try(st_buffer(sfc, units::set_units(1000, km))) # error: no crs
Error in st_buffer.sfc(sfc, units::set_units(1000, km)) :
x does not have a crs set: can't convert units
> sfc = st_sfc(p1, p2, crs = 4326)
> try(st_buffer(sfc, units::set_units(1000, km))) # error: wrong units
Error : cannot convert km into °
In addition: Warning message:
In st_buffer.sfc(sfc, units::set_units(1000, km)) :
st_buffer does not correctly buffer longitude/latitude data
> if (version$os == "linux-gnu") { # FIXME: why does this break on windows - degree symbol?
+ x = st_buffer(sfc, units::set_units(0.1, rad)) # OK: will convert to arc_degrees
+ }
Warning message:
In st_buffer.sfc(sfc, units::set_units(0.1, rad)) :
st_buffer does not correctly buffer longitude/latitude data
> x = st_transform(sfc, 3857)
> x = st_buffer(x, units::set_units(1000, km)) # success
>
> cr = st_as_sfc("CIRCULARSTRING(0 0,1 0,1 1)")
> cr1 = st_sf(a = 1, geometry = cr)
> plot(cr)
> st_as_grob(cr[[1]])
lines[GRID.lines.1]
>
> x = st_as_sfc("MULTISURFACE(CURVEPOLYGON(COMPOUNDCURVE(LINESTRING(-159.399779123 22.226016471, -159.399699153 22.226276431, -159.398736217 22.226118372, -159.398260872 22.226095318, -159.398140792 22.2260564590001, -159.398163058 22.2257268010001, -159.397882642 22.225394244, -159.397397157 22.225057335, -159.397318825 22.2251780230001, -159.396993115 22.225177984, -159.396748242 22.2248808800001, -159.396901679 22.224770398, -159.396876329 22.224673093, -159.399167008 22.224731392, -159.399502204 22.225551382), CIRCULARSTRING(-159.399502204 22.225551382, -159.399622762077 22.2257930044972, -159.399779123 22.226016471))))")
> mp <- x[[1]] %>% st_cast("MULTIPOLYGON")
>
> x = st_as_sfc("COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))")
> ls <- x[[1]] %>% st_cast()
> class(ls)
[1] "XY" "LINESTRING" "sfg"
>
> is.na(st_bbox(ls))
[1] FALSE
>
> mp = st_combine(st_buffer(st_sfc(lapply(1:3, function(x) st_point(c(x,x)))), 0.2 * 1:3))
> plot(st_centroid(mp), add = TRUE, col = 'red') # centroid of combined geometry
> plot(st_centroid(mp, of_largest_polygon = TRUE), add = TRUE, col = 'blue', pch = 3) # center of largest sub-polygon
>
> x = st_sfc(st_polygon(list(rbind(c(0,0),c(0.5,0),c(0.5,0.5),c(0.5,0),c(1,0),c(1,1),c(0,1),c(0,0)))))
> suppressWarnings(st_is_valid(x))
[1] FALSE
> y = st_make_valid(x)
> y = st_make_valid(x[[1]])
> y = st_make_valid(st_sf(a = 1, geom = x))
> st_is_valid(y)
[1] TRUE
>
> proc.time()
user system elapsed
1.160 0.072 1.229
|