1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
R version 3.6.2 (2019-12-12) -- "Dark and Stormy Night"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> suppressPackageStartupMessages(library(sf))
> # nc = st_read(system.file("gpkg/nc.gpkg", package="sf"))
> nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)
> nc_checked = st_transform(nc, 32119, check = TRUE)
> ncm = st_transform(nc, 32119)
>
> x = st_transform(nc[1:10,], 32119)
> st_distance(x)
Units: [m]
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.00 0.00 25652.53 440561.15 299772.18 361529.53 419671.2
[2,] 0.00 0.00 0.00 409428.54 268944.31 332589.77 388544.5
[3,] 25652.53 0.00 0.00 367555.48 227017.51 290297.10 346667.9
[4,] 440561.15 409428.54 367555.48 0.00 67226.86 45537.55 0.0
[5,] 299772.18 268944.31 227017.51 67226.86 0.00 0.00 46527.4
[6,] 361529.53 332589.77 290297.10 45537.55 0.00 0.00 30213.0
[7,] 419671.16 388544.52 346667.93 0.00 46527.40 30213.00 0.0
[8,] 384592.90 354294.11 312350.68 16130.34 11926.81 0.00 0.0
[9,] 262354.29 231217.49 189310.35 140455.87 0.00 64606.24 119563.7
[10,] 71139.29 41943.83 0.00 330751.39 190182.39 252372.06 309862.0
[,8] [,9] [,10]
[1,] 384592.90 262354.29 71139.29
[2,] 354294.11 231217.49 41943.83
[3,] 312350.68 189310.35 0.00
[4,] 16130.34 140455.87 330751.39
[5,] 11926.81 0.00 190182.39
[6,] 0.00 64606.24 252372.06
[7,] 0.00 119563.73 309861.97
[8,] 0.00 85533.12 275389.78
[9,] 85533.12 0.00 152488.92
[10,] 275389.78 152488.92 0.00
>
> st_is_valid(nc)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
>
> st_is_empty(st_sfc(st_point(), st_linestring()))
[1] TRUE TRUE
>
> ops = c("intersects", #"disjoint",
+ "touches", "crosses", "within", "contains", "overlaps", "equals", "covers", "covered_by", "equals_exact")
> for (op in ops) {
+ x = sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, FALSE)
+ x = sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, TRUE)
+ }
>
> ops = c("intersects", #"disjoint",
+ "touches", "crosses", "within", "contains", "overlaps", "covers", "covered_by")
> df = data.frame(ops = ops)
> df$equal = NA
> for (op in ops)
+ df[df$ops == op, "equal"] = identical(
+ sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, TRUE, FALSE),
+ sf:::st_geos_binop(op, ncm[1:50,], ncm[51:100,], 0, NA_character_, TRUE, TRUE)
+ )
> df
ops equal
1 intersects TRUE
2 touches TRUE
3 crosses TRUE
4 within TRUE
5 contains TRUE
6 overlaps TRUE
7 covers TRUE
8 covered_by TRUE
>
> st_contains_properly(ncm[1:3,], ncm[1:3])
Sparse geometry binary predicate list of length 3, where the predicate was `contains_properly'
1: (empty)
2: (empty)
3: (empty)
>
> st_combine(nc)
Geometry set for 1 feature
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
geographic CRS: NAD27
MULTIPOLYGON (((-81.47276 36.23436, -81.54084 3...
>
> st_dimension(st_sfc(st_point(0:1), st_linestring(rbind(c(0,0),c(1,1))),
+ st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0))))))
[1] 0 1 2
>
> ncbb = st_as_sfc(st_bbox(nc))
> g = st_make_grid(ncbb)
although coordinates are longitude/latitude, st_relate_pattern assumes that they are planar
> x = st_intersection(nc, g)
although coordinates are longitude/latitude, st_intersection assumes that they are planar
Warning message:
attribute variables are assumed to be spatially constant throughout all geometries
> x = st_intersection(g, nc)
although coordinates are longitude/latitude, st_intersection assumes that they are planar
>
> ls = st_sfc(st_linestring(rbind(c(0,0),c(0,1))),
+ st_linestring(rbind(c(0,0),c(10,0))))
>
> suppressWarnings(RNGversion("3.5.3"))
> set.seed(13531)
>
> st_line_sample(ls, density = 1, type = "random")
Geometry set for 2 features
geometry type: MULTIPOINT
dimension: XY
bbox: xmin: 0 ymin: 0 xmax: 6.880179 ymax: 0.8878369
CRS: NA
MULTIPOINT ((0 0.8878369))
MULTIPOINT ((0.2986488 0), (2.48417 0), (2.5678...
>
> g = st_make_grid(ncbb, n = c(20,10))
although coordinates are longitude/latitude, st_relate_pattern assumes that they are planar
>
> a1 = st_interpolate_aw(nc["BIR74"], g, FALSE)
although coordinates are longitude/latitude, st_intersection assumes that they are planar
Warning message:
In st_interpolate_aw.sf(nc["BIR74"], g, FALSE) :
st_interpolate_aw assumes attributes are constant over areas of x
> sum(a1$BIR74) / sum(nc$BIR74) # not close to one: property is assumed spatially intensive
[1] 1.436169
> a2 = st_interpolate_aw(nc["BIR74"], g, extensive = TRUE)
although coordinates are longitude/latitude, st_intersection assumes that they are planar
Warning message:
In st_interpolate_aw.sf(nc["BIR74"], g, extensive = TRUE) :
st_interpolate_aw assumes attributes are constant over areas of x
> sum(a2$BIR74) / sum(nc$BIR74)
[1] 1.000013
>
> # missing x:
> g = st_make_grid(offset = c(0,0), cellsize = c(1,1), n = c(10,10))
> g = st_make_grid(what = "centers")
> length(g)
[1] 648
> g = st_make_grid(what = "corners")
> length(g)
[1] 703
>
> g1 = st_make_grid(ncbb, 0.1, what = "polygons", square = FALSE)
although coordinates are longitude/latitude, st_relate_pattern assumes that they are planar
> g2 = st_make_grid(ncbb, 0.1, what = "points", square = FALSE)
although coordinates are longitude/latitude, st_intersects assumes that they are planar
although coordinates are longitude/latitude, st_intersects assumes that they are planar
>
> # st_line_merge:
> mls = st_multilinestring(list(rbind(c(0,0), c(1,1)), rbind(c(2,0), c(1,1))))
> st_line_merge(mls)
LINESTRING (0 0, 1 1, 2 0)
>
> if (sf_extSoftVersion()["GEOS"] >= "3.5.0") {
+ # voronoi:
+ set.seed(1)
+ x = st_multipoint(matrix(runif(10),,2))
+ box = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0))))
+ v = st_sfc(st_voronoi(x, st_sfc(box)))
+ plot(v, col = 0, border = 1, axes = TRUE)
+ plot(box, add = TRUE, col = 0, border = 1) # a larger box is returned, as documented
+ plot(x, add = TRUE, col = 'red', cex=2, pch=16)
+ plot(st_intersection(st_cast(v), box)) # clip to smaller box
+ plot(x, add = TRUE, col = 'red', cex=2, pch=16)
+
+ v = st_voronoi(x)
+ print(class(v))
+ v = st_sfc(st_voronoi(st_sfc(x)))
+ print(class(v))
+ v = st_voronoi(st_sf(a = 1, geom = st_sfc(x)))
+ print(class(v))
+ }
[1] "XY" "GEOMETRYCOLLECTION" "sfg"
[1] "sfc_GEOMETRYCOLLECTION" "sfc"
[1] "sf" "data.frame"
>
> i = st_intersects(ncm, ncm[1:88,])
> all.equal(i, t(t(i)))
[1] TRUE
>
> # check use of pattern in st_relate:
> sfc = st_as_sfc(st_bbox(st_sfc(st_point(c(0,0)), st_point(c(3,3)))))
> grd = st_make_grid(sfc, n = c(3,3))
> st_intersects(grd)
Sparse geometry binary predicate list of length 9, where the predicate was `intersects'
1: 1, 2, 4, 5
2: 1, 2, 3, 4, 5, 6
3: 2, 3, 5, 6
4: 1, 2, 4, 5, 7, 8
5: 1, 2, 3, 4, 5, 6, 7, 8, 9
6: 2, 3, 5, 6, 8, 9
7: 4, 5, 7, 8
8: 4, 5, 6, 7, 8, 9
9: 5, 6, 8, 9
> st_relate(grd, pattern = "****1****")
Sparse geometry binary predicate list of length 9, where the predicate was `relate_pattern'
1: 1, 2, 4
2: 1, 2, 3, 5
3: 2, 3, 6
4: 1, 4, 5, 7
5: 2, 4, 5, 6, 8
6: 3, 5, 6, 9
7: 4, 7, 8
8: 5, 7, 8, 9
9: 6, 8, 9
> st_relate(grd, pattern = "****0****")
Sparse geometry binary predicate list of length 9, where the predicate was `relate_pattern'
1: 5
2: 4, 6
3: 5
4: 2, 8
5: 1, 3, 7, 9
6: 2, 8
7: 5
8: 4, 6
9: 5
> st_rook = function(a, b = a, ...) st_relate(a, b, pattern = "F***1****", ...)
> st_rook(grd, sparse = FALSE)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[2,] TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[3,] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[4,] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[5,] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[6,] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
[7,] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[8,] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
[9,] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
>
> #if (Sys.getenv("USER") %in% c("edzer", "travis")) { # memory leaks:
> try(st_relate(st_point(), st_point(), pattern = "FF*FF****")) # error: use st_disjoint
Error in CPL_geos_binop(st_geometry(x), st_geometry(y), op, par, pattern, :
use st_disjoint for this pattern
> #}
>
> a = st_is_within_distance(nc[c(1:3,20),], nc[1:3,], 100000, sparse = FALSE)
> b = st_is_within_distance(nc[c(1:3,20),], nc[1:3,], units::set_units(100000, m), sparse = FALSE)
> all.equal(a, b)
[1] TRUE
> x = st_is_within_distance(nc[1:3,], nc[1:5,], 100000)
> y = st_is_within_distance(nc[1:3,], nc[1:5,], units::set_units(100, km))
> all.equal(x, y)
[1] TRUE
>
> nc_3857 = st_transform(nc, 3857)
> a = st_is_within_distance(nc_3857[c(1:3,20),], nc_3857[1:3,], 100000, sparse = FALSE)
> b = st_is_within_distance(nc_3857[c(1:3,20),], nc_3857[1:3,], units::set_units(100000, m), sparse = FALSE)
> all.equal(a, b)
[1] TRUE
> x = st_is_within_distance(nc_3857, nc_3857, 100000)
> y = st_is_within_distance(nc_3857, nc_3857, units::set_units(100, km))
> all.equal(x, y)
[1] TRUE
>
> pe = st_sfc(st_point())
> p = st_sfc(st_point(c(0,0)), st_point(c(0,1)), st_point(c(0,2)))
> st_distance(p, p)
[,1] [,2] [,3]
[1,] 0 1 2
[2,] 1 0 1
[3,] 2 1 0
> st_distance(p, pe)
[,1]
[1,] NA
[2,] NA
[3,] NA
> st_distance(p, p, by_element = TRUE)
[1] 0 0 0
> st_crs(p) = 4326
> st_distance(p, p[c(2,3,1)], by_element = TRUE)
Units: [m]
[1] 110574.4 110575.1 221149.5
> p = st_transform(p, 3587)
> st_distance(p, p[c(2,3,1)], by_element = TRUE)
Units: [m]
[1] 144589.5 142873.3 287462.8
>
> # from https://github.com/r-spatial/sf/issues/458 :
> pts <- st_sfc(st_point(c(.5,.5)), st_point(c(1.5, 1.5)), st_point(c(2.5, 2.5)))
> pol <- st_polygon(list(rbind(c(0,0), c(2,0), c(2,2), c(0,2), c(0,0))))
> pol_df <- data.frame(id = 1)
> st_geometry(pol_df) <- st_sfc(pol)
> st_intersects(pts, pol_df[pol_df$id == 2,]) # with empty sf/sfc
Sparse geometry binary predicate list of length 3, where the predicate was `intersects'
1: (empty)
2: (empty)
3: (empty)
> st_intersects(pts, pol_df[pol_df$id == 2,], sparse = FALSE) # with empty sf/sfc
[1,]
[2,]
[3,]
>
> # st_node
> l = st_linestring(rbind(c(0,0), c(1,1), c(0,1), c(1,0), c(0,0)))
> st_node(l)
MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1, 0 1, 0.5 0.5), (0.5 0.5, 1 0, 0 0))
> st_node(st_sfc(l))
Geometry set for 1 feature
geometry type: MULTILINESTRING
dimension: XY
bbox: xmin: 0 ymin: 0 xmax: 1 ymax: 1
CRS: NA
MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1,...
> st_node(st_sf(a = 1, st_sfc(l)))
Simple feature collection with 1 feature and 1 field
geometry type: MULTILINESTRING
dimension: XY
bbox: xmin: 0 ymin: 0 xmax: 1 ymax: 1
CRS: NA
a st_sfc.l.
1 1 MULTILINESTRING ((0 0, 0.5 ...
>
> # print.sgbp:
> (lst = st_disjoint(nc, nc))
although coordinates are longitude/latitude, st_intersects assumes that they are planar
Sparse geometry binary predicate list of length 100, where the predicate was `disjoint'
first 10 elements:
1: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
2: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...
3: 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, ...
4: 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, ...
5: 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, ...
6: 1, 2, 3, 4, 7, 9, 10, 11, 12, 13, ...
7: 1, 2, 3, 5, 6, 9, 10, 11, 12, 13, ...
8: 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, ...
9: 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, ...
10: 1, 2, 4, 5, 6, 7, 8, 9, 11, 13, ...
> # dim.sgbp:
> dim(lst)
[1] 100 100
> # as.matrix.sgbp:
> as.matrix(lst)[1:5, 1:5]
[,1] [,2] [,3] [,4] [,5]
[1,] FALSE FALSE TRUE TRUE TRUE
[2,] FALSE FALSE FALSE TRUE TRUE
[3,] TRUE FALSE FALSE TRUE TRUE
[4,] TRUE TRUE TRUE FALSE TRUE
[5,] TRUE TRUE TRUE TRUE FALSE
> # negate:
> !lst
Sparse geometry binary predicate list of length 100, where the predicate was `!disjoint'
first 10 elements:
1: 1, 2, 18, 19
2: 1, 2, 3, 18
3: 2, 3, 10, 18, 23, 25
4: 4, 7, 56
5: 5, 6, 9, 16, 28
6: 5, 6, 8, 28
7: 4, 7, 8, 17
8: 6, 7, 8, 17, 20, 21
9: 5, 9, 15, 16, 24, 31
10: 3, 10, 12, 25, 26
> # as.data.frame:
> head(as.data.frame(lst), 10)
row.id col.id
1 1 3
2 1 4
3 1 5
4 1 6
5 1 7
6 1 8
7 1 9
8 1 10
9 1 11
10 1 12
>
> # snap:
> nc1 = st_transform(nc, 32119)
> g = st_make_grid(nc1, c(5000,5000), what = "centers")
> s = st_snap(nc1[1:3,], g, 2501*sqrt(2))
> sfg = st_snap(st_geometry(nc1)[[1]], g, 2501*sqrt(2))
> sfg = st_snap(st_geometry(nc1)[[1]], st_combine(g), 2501*sqrt(2))
>
> # Hausdorff distance: http://geos.refractions.net/ro/doxygen_docs/html/classgeos_1_1algorithm_1_1distance_1_1DiscreteHausdorffDistance.html
> A = st_as_sfc("LINESTRING (0 0, 100 0, 10 100, 10 100)")
> B = st_as_sfc("LINESTRING (0 100, 0 10, 80 10)")
> st_distance(c(A,B))
[,1] [,2]
[1,] 0.000000 8.176236
[2,] 8.176236 0.000000
> st_distance(c(A,B), which = "Hausdorff")
[,1] [,2]
[1,] 0.00000 22.36068
[2,] 22.36068 0.00000
> st_distance(c(A,B), which = "Hausdorff", par = 0.001)
[,1] [,2]
[1,] 2.929643e-14 4.789000e+01
[2,] 4.789000e+01 2.131628e-14
> LE = st_as_sfc("LINESTRING EMPTY")
> st_distance(c(A, LE), which = "Hausdorff", par = 0.001)
[,1] [,2]
[1,] 2.929643e-14 NA
[2,] NA NA
>
> # one-argument st_intersection and st_difference:
> set.seed(131)
> m = rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0))
> p = st_polygon(list(m))
> n = 100
> l = vector("list", n)
> for (i in 1:n)
+ l[[i]] = p + 10 * runif(2)
> s = st_sfc(l)
> plot(s, col = sf.colors(categorical = TRUE, alpha = .5))
> d = st_difference(s) # sequential differences: s1, s2-s1, s3-s2-s1, ...
> plot(d, col = sf.colors(categorical = TRUE, alpha = .5))
> i = st_intersection(s) # all intersections
> plot(i, col = sf.colors(categorical = TRUE, alpha = .5))
> summary(lengths(st_overlaps(s, s)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 2.00 3.50 3.66 5.00 8.00
> summary(lengths(st_overlaps(d, d)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0
> summary(lengths(st_overlaps(i, i)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0
>
> sf = st_sf(s)
> i = st_intersection(sf) # all intersections
> plot(i["n.overlaps"])
> summary(i$n.overlaps - lengths(i$origins))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0
>
> # st_nearest_points:
> pt1 = st_point(c(.1,.1))
> pt2 = st_point(c(.9,.9))
> b1 = st_buffer(pt1, 0.1)
> b2 = st_buffer(pt2, 0.1)
> plot(b1, xlim = c(0,1), ylim = c(0,1))
> plot(b2, add = TRUE)
> (ls0 = try(st_nearest_points(b1, b2))) # sfg
Geometry set for 1 feature
geometry type: LINESTRING
dimension: XY
bbox: xmin: 0.1707107 ymin: 0.1707107 xmax: 0.8292893 ymax: 0.8292893
CRS: NA
LINESTRING (0.1707107 0.1707107, 0.8292893 0.82...
> (ls = try(st_nearest_points(st_sfc(b1), st_sfc(b2)))) # sfc
Geometry set for 1 feature
geometry type: LINESTRING
dimension: XY
bbox: xmin: 0.1707107 ymin: 0.1707107 xmax: 0.8292893 ymax: 0.8292893
CRS: NA
LINESTRING (0.1707107 0.1707107, 0.8292893 0.82...
> (ls = try(st_nearest_points(st_sfc(b1), st_sfc(b2), pairwise = TRUE))) # sfc
Geometry set for 1 feature
geometry type: LINESTRING
dimension: XY
bbox: xmin: 0.1707107 ymin: 0.1707107 xmax: 0.8292893 ymax: 0.8292893
CRS: NA
LINESTRING (0.1707107 0.1707107, 0.8292893 0.82...
> identical(ls0, ls)
[1] TRUE
> # plot(ls, add = TRUE, col = 'red')
>
> nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
> plot(st_geometry(nc))
> ls = try(st_nearest_points(nc[1,], nc))
although coordinates are longitude/latitude, st_nearest_points assumes that they are planar
> # plot(ls, col = 'red', add = TRUE)
> pts = st_cast(ls, "POINT") # gives all start & end points
> # starting, "from" points, corresponding to x:
> plot(pts[seq(1, 200, 2)], add = TRUE, col = 'blue')
> # ending, "to" points, corresponding to y:
> plot(pts[seq(2, 200, 2)], add = TRUE, col = 'red')
>
> # points to nearest features
> ls1 = st_linestring(rbind(c(0,0), c(1,0)))
> ls2 = st_linestring(rbind(c(0,0.1), c(1,0.1)))
> ls3 = st_linestring(rbind(c(0,1), c(1,1)))
> (l = st_sfc(ls1, ls2, ls3))
Geometry set for 3 features
geometry type: LINESTRING
dimension: XY
bbox: xmin: 0 ymin: 0 xmax: 1 ymax: 1
CRS: NA
LINESTRING (0 0, 1 0)
LINESTRING (0 0.1, 1 0.1)
LINESTRING (0 1, 1 1)
>
> p1 = st_point(c(0.1, -0.1))
> p2 = st_point(c(0.1, 0.11))
> p3 = st_point(c(0.1, 0.09))
> p4 = st_point(c(0.1, 0.9))
> p5 = st_point()
>
> (p = st_sfc(p1, p2, p3, p4, p5))
Geometry set for 5 features (with 1 geometry empty)
geometry type: POINT
dimension: XY
bbox: xmin: 0.1 ymin: -0.1 xmax: 0.1 ymax: 0.9
CRS: NA
POINT (0.1 -0.1)
POINT (0.1 0.11)
POINT (0.1 0.09)
POINT (0.1 0.9)
POINT EMPTY
> #st_nearest_points(p, l)
> n = try(st_nearest_feature(p,l))
> if (!inherits(n, "try-error")) {
+ print(st_nearest_points(p, l[n], pairwise = TRUE))
+ print(st_nearest_feature(p, l))
+ print(st_nearest_feature(p, st_sfc()))
+ print(st_nearest_feature(st_sfc(), l))
+ }
Geometry set for 5 features (with 1 geometry empty)
geometry type: LINESTRING
dimension: XY
bbox: xmin: 0.1 ymin: -0.1 xmax: 0.1 ymax: 1
CRS: NA
LINESTRING (0.1 -0.1, 0.1 0)
LINESTRING (0.1 0.11, 0.1 0.1)
LINESTRING (0.1 0.09, 0.1 0.1)
LINESTRING (0.1 0.9, 0.1 1)
LINESTRING EMPTY
[1] 1 2 2 3 NA
[1] NA NA NA NA NA
integer(0)
>
> # can do centroid of empty geom:
> st_centroid(st_polygon())
POINT EMPTY
>
> #999:
> pt = data.frame(x=1:2, y=1:2,a=letters[1:2])
> pt = st_as_sf(pt, coords=c("x","y"))
>
> bf =st_buffer(pt, dist=0.3)
>
> st_within(pt,bf, sparse=FALSE)
[,1] [,2]
[1,] TRUE FALSE
[2,] FALSE TRUE
> st_within(pt[1,], bf[1,], sparse = FALSE)
[,1]
[1,] TRUE
> st_relate(pt[1,], bf[1,], pattern = "T*F**F***", sparse = FALSE)
[,1]
[1,] TRUE
>
> sf:::is_symmetric(pattern = "010121010")
[1] TRUE
> sf:::is_symmetric(pattern = "010121021")
[1] FALSE
>
> st_intersects(st_point(0:1), st_point(2:3)) # sfg method
Sparse geometry binary predicate list of length 1, where the predicate was `intersects'
1: (empty)
>
> if (sf_extSoftVersion()["GEOS"] >= "3.7.0") {
+ ls = st_linestring(rbind(c(1,1), c(2,2), c(3,3)))
+ print(st_reverse(ls))
+ print(st_reverse(st_sfc(ls)))
+ print(st_reverse(st_sf(a = 2, geom = st_sfc(ls))))
+ }
LINESTRING (3 3, 2 2, 1 1)
Geometry set for 1 feature
geometry type: LINESTRING
dimension: XY
bbox: xmin: 1 ymin: 1 xmax: 3 ymax: 3
CRS: NA
LINESTRING (3 3, 2 2, 1 1)
Simple feature collection with 1 feature and 1 field
geometry type: LINESTRING
dimension: XY
bbox: xmin: 1 ymin: 1 xmax: 3 ymax: 3
CRS: NA
a geom
1 2 LINESTRING (3 3, 2 2, 1 1)
>
> proc.time()
user system elapsed
4.369 0.075 4.463
|