1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
---
title: "3. Manipulating Simple Feature Geometries"
author: "Edzer Pebesma"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{3. Manipulating Simple Feature Geometries}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
**For a better version of the sf vignettes see** https://r-spatial.github.io/sf/articles/
```{r echo=FALSE, include=FALSE}
knitr::opts_chunk$set(fig.height = 4.5)
knitr::opts_chunk$set(fig.width = 6)
knitr::opts_chunk$set(collapse = TRUE)
```
This vignette describes how simple feature geometries can be
manipulated, where manipulations include
* type transformations (e.g., `POLYGON` to `MULTIPOLYGON`)
* affine transformation (shift, scale, rotate)
* transformation into a different coordinate reference system
* geometrical operations, e.g. finding the centroid of a polygon, detecting whether pairs of feature geometries intersect, or find the union (overlap) of two polygons.
## Type transformations
This sections discusses how simple feature geometries of one type can be converted to another. For converting lines to polygons, see also `st_polygonize()` below.
### For single geometries
For single geometries, `st_cast()` will
1. convert from XX to MULTIXX, e.g. `LINESTRING` to `MULTILINESTRING`
2. convert from MULTIXX to XX if MULTIXX has length one (else, it will still convert but warn about loss of information)
3. convert from MULTIXX to XX if MULTIXX does not have length one, but it will warn about the loss of information
4. convert GEOMETRYCOLLECTION of length one to its component if
Examples of the first three types are:
```{r}
library(sf)
suppressPackageStartupMessages(library(dplyr))
st_point(c(1,1)) %>% st_cast("MULTIPOINT")
st_multipoint(rbind(c(1,1))) %>% st_cast("POINT")
st_multipoint(rbind(c(1,1),c(2,2))) %>% st_cast("POINT")
```
Examples of the fourth type are:
```{r}
st_geometrycollection(list(st_point(c(1,1)))) %>% st_cast("POINT")
```
### For collections of geometry (sfc) and simple feature collections (sf)
It should be noted here that when reading geometries using `st_read()`, the `type` argument can be used to control the class of the returned geometry:
```{r}
shp = system.file("shape/nc.shp", package="sf")
class(st_geometry(st_read(shp, quiet = TRUE)))
class(st_geometry(st_read(shp, quiet = TRUE, type = 3)))
class(st_geometry(st_read(shp, quiet = TRUE, type = 1)))
```
This option is handled by the GDAL library; in case of failure to convert to the target type, the original types are returned, which in this case is a mix of `POLYGON` and `MULTIPOLYGON` geometries, leading to a `GEOMETRY` as superclass. When we try to read multipolygons as polygons, all secondary rings of multipolygons get lost.
When functions return objects with mixed geometry type (`GEOMETRY`), downstream functions such as `st_write()` may have difficulty handling them. For some of these cases, `st_cast()` may help modify their type. For sets of geometry objects (`sfc`) and simple feature sets (`sf), `st_cast` can be used by specifying the target type, or without specifying it.
```{r}
ls <- st_linestring(rbind(c(0,0),c(1,1),c(2,1)))
mls <- st_multilinestring(list(rbind(c(2,2),c(1,3)), rbind(c(0,0),c(1,1),c(2,1))))
(sfc <- st_sfc(ls,mls))
st_cast(sfc, "MULTILINESTRING")
sf <- st_sf(a = 5:4, geom = sfc)
st_cast(sf, "MULTILINESTRING")
```
When no target type is given, `st_cast()` tries to be smart for two cases:
1. if the class of the object is `GEOMETRY`, and all elements are of identical type, and
2. if all elements are length-one `GEOMETRYCOLLECTION` objects, in which case `GEOMETRYCOLLECTION` objects are replaced by their content (which may be a `GEOMETRY` mix again)
Examples are:
```{r}
ls <- st_linestring(rbind(c(0,0),c(1,1),c(2,1)))
mls1 <- st_multilinestring(list(rbind(c(2,2),c(1,3)), rbind(c(0,0),c(1,1),c(2,1))))
mls2 <- st_multilinestring(list(rbind(c(4,4),c(4,3)), rbind(c(2,2),c(2,1),c(3,1))))
(sfc <- st_sfc(ls,mls1,mls2))
class(sfc[2:3])
class(st_cast(sfc[2:3]))
gc1 <- st_geometrycollection(list(st_linestring(rbind(c(0,0),c(1,1),c(2,1)))))
gc2 <- st_geometrycollection(list(st_multilinestring(list(rbind(c(2,2),c(1,3)), rbind(c(0,0),c(1,1),c(2,1))))))
gc3 <- st_geometrycollection(list(st_multilinestring(list(rbind(c(4,4),c(4,3)), rbind(c(2,2),c(2,1),c(3,1))))))
(sfc <- st_sfc(gc1,gc2,gc3))
class(st_cast(sfc))
class(st_cast(st_cast(sfc), "MULTILINESTRING"))
```
## Affine transformations
Affine transformations are transformations of the type $f(x) = xA + b$, where matrix $A$ is used to flatten, scale and/or rotate, and $b$ to translate $x$. Low-level examples are:
```{r}
(p = st_point(c(0,2)))
p + 1
p + c(1,2)
p + p
p * p
rot = function(a) matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2)
p * rot(pi/4)
p * rot(pi/2)
p * rot(pi)
```
Just to make the point, we can for instance rotate the counties of North Carolina 90 degrees clockwise around their centroid, and shrink them to 75% of their original size:
```{r,fig=TRUE}
nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)
ncg = st_geometry(nc)
plot(ncg, border = 'grey')
cntrd = st_centroid(ncg)
ncg2 = (ncg - cntrd) * rot(pi/2) * .75 + cntrd
plot(ncg2, add = TRUE)
plot(cntrd, col = 'red', add = TRUE, cex = .5)
```
## Coordinate reference systems conversion and transformation
### Getting and setting coordinate reference systems of sf objects
The coordinate reference system of objects of class `sf` or `sfc` is
obtained by `st_crs()`, and replaced by `st_crs<-`:
```{r}
library(sf)
geom = st_sfc(st_point(c(0,1)), st_point(c(11,12)))
s = st_sf(a = 15:16, geometry = geom)
st_crs(s)
s1 = s
st_crs(s1) <- 4326
st_crs(s1)
s2 = s
st_crs(s2) <- "+proj=longlat +datum=WGS84"
all.equal(s1, s2)
```
An alternative, more pipe-friendly version of `st_crs<-` is
```{r}
s1 %>% st_set_crs(4326)
```
### Coordinate reference system transformations
If we change the coordinate reference system from one non-missing
value into another non-missing value, the CRS is is changed without
modifying any coordinates, but a warning is issued that this
did not reproject values:
```{r}
s3 <- s1 %>% st_set_crs(4326) %>% st_set_crs(3857)
```
A cleaner way to do this that better expresses intention and does
not generate this warning is to first wipe the CRS by assigning it
a missing value, and then set it to the intended value.
```{r}
s3 <- s1 %>% st_set_crs(NA) %>% st_set_crs(3857)
```
To carry out a coordinate conversion or transformation, we use
`st_transform()`
```{r}
s3 <- s1 %>% st_transform(3857)
s3
```
for which we see that coordinates are actually modified (projected).
## Geometrical operations
All geometrical operations `st_op(x)` or `st_op2(x,y)` work
both for `sf` objects and for `sfc` objects `x` and `y`; since
the operations work on the geometries, the non-geometry parts of
an `sf` object are simply discarded. Also, all binary operations
`st_op2(x,y)` called with a single argument, as `st_op2(x)`, are
handled as `st_op2(x,x)`.
We will illustrate the geometrical operations on a very simple dataset:
```{r figure=TRUE}
b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))))
b1 = b0 + 2
b2 = b0 + c(-0.2, 2)
x = st_sfc(b0, b1, b2)
a0 = b0 * 0.8
a1 = a0 * 0.5 + c(2, 0.7)
a2 = a0 + 1
a3 = b0 * 0.5 + c(2, -0.5)
y = st_sfc(a0,a1,a2,a3)
plot(x, border = 'red')
plot(y, border = 'green', add = TRUE)
```
### Unary operations
`st_is_valid()` returns whether polygon geometries are topologically valid:
```{r}
b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))))
b1 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(0,-1), c(-1,-1))))
st_is_valid(st_sfc(b0,b1))
```
and `st_is_simple()` whether line geometries are simple:
```{r}
s = st_sfc(st_linestring(rbind(c(0,0), c(1,1))),
st_linestring(rbind(c(0,0), c(1,1),c(0,1),c(1,0))))
st_is_simple(s)
```
`st_area()` returns the area of polygon geometries, `st_length()` the
length of line geometries:
```{r}
st_area(x)
st_area(st_sfc(st_point(c(0,0))))
st_length(st_sfc(st_linestring(rbind(c(0,0),c(1,1),c(1,2))), st_linestring(rbind(c(0,0),c(1,0)))))
st_length(st_sfc(st_multilinestring(list(rbind(c(0,0),c(1,1),c(1,2))),rbind(c(0,0),c(1,0))))) # ignores 2nd part!
```
### Binary operations: distance and relate
`st_distance()` computes the shortest distance matrix between geometries; this is
a dense matrix:
```{r}
st_distance(x,y)
```
`st_relate()` returns a dense character matrix with the DE9-IM relationships
between each pair of geometries:
```{r}
st_relate(x,y)
```
element [i,j] of this matrix has nine characters, referring to relationship between x[i] and y[j], encoded as $I_xI_y,I_xB_y,I_xE_y,B_xI_y,B_xB_y,B_xE_y,E_xI_y,E_xB_y,E_xE_y$ where $I$ refers to interior, $B$ to boundary, and $E$ to exterior, and e.g. $B_xI_y$ the dimensionality of the intersection of the the boundary $B_x$ of x[i] and the interior $I_y$ of y[j], which is one of {0,1,2,F}, indicating zero-, one-, two-dimension intersection, and (F) no intersection, respectively.
### Binary logical operations:
Binary logical operations return either a sparse matrix
```{r}
st_intersects(x,y)
```
or a dense matrix
```{r}
st_intersects(x, x, sparse = FALSE)
st_intersects(x, y, sparse = FALSE)
```
where list element `i` of a sparse matrix contains the indices of
the `TRUE` elements in row `i` of the the dense matrix. For large
geometry sets, dense matrices take up a lot of memory and are
mostly filled with `FALSE` values, hence the default is to return
a sparse matrix.
`st_intersects()` returns for every geometry pair whether they
intersect (dense matrix), or which elements intersect (sparse).
Note that `st_intersection()` in this package returns
a geometry for the intersection instead of logicals as in `st_intersects()` (see the next section of this vignette).
Other binary predicates include (using sparse for readability):
```{r}
st_disjoint(x, y, sparse = FALSE)
st_touches(x, y, sparse = FALSE)
st_crosses(s, s, sparse = FALSE)
st_within(x, y, sparse = FALSE)
st_contains(x, y, sparse = FALSE)
st_overlaps(x, y, sparse = FALSE)
st_equals(x, y, sparse = FALSE)
st_covers(x, y, sparse = FALSE)
st_covered_by(x, y, sparse = FALSE)
st_covered_by(y, y, sparse = FALSE)
st_equals_exact(x, y,0.001, sparse = FALSE)
```
### Operations returning a geometry
```{r, fig=TRUE}
u = st_union(x)
plot(u)
```
```{r, fig=TRUE}
par(mfrow=c(1,2), mar = rep(0,4))
plot(st_buffer(u, 0.2))
plot(u, border = 'red', add = TRUE)
plot(st_buffer(u, 0.2), border = 'grey')
plot(u, border = 'red', add = TRUE)
plot(st_buffer(u, -0.2), add = TRUE)
```
```{r}
plot(st_boundary(x))
```
```{r}
par(mfrow = c(1:2))
plot(st_convex_hull(x))
plot(st_convex_hull(u))
par(mfrow = c(1,1))
```
```{r, fig=TRUE}
par(mfrow=c(1,2))
plot(x)
plot(st_centroid(x), add = TRUE, col = 'red')
plot(x)
plot(st_centroid(u), add = TRUE, col = 'red')
```
The intersection of two geometries is the geometry covered by both; it is obtained by `st_intersection()`:
```{r, fig=TRUE}
plot(x)
plot(y, add = TRUE)
plot(st_intersection(st_union(x),st_union(y)), add = TRUE, col = 'red')
```
Note that `st_intersects()` returns a logical matrix indicating whether each geometry pair intersects (see the previous section in this vignette).
To get _everything but_ the intersection, use `st_difference()` or `st_sym_difference()`:
```{r,fig=TRUE}
par(mfrow=c(2,2), mar = c(0,0,1,0))
plot(x, col = '#ff333388');
plot(y, add=TRUE, col='#33ff3388')
title("x: red, y: green")
plot(x, border = 'grey')
plot(st_difference(st_union(x),st_union(y)), col = 'lightblue', add = TRUE)
title("difference(x,y)")
plot(x, border = 'grey')
plot(st_difference(st_union(y),st_union(x)), col = 'lightblue', add = TRUE)
title("difference(y,x)")
plot(x, border = 'grey')
plot(st_sym_difference(st_union(y),st_union(x)), col = 'lightblue', add = TRUE)
title("sym_difference(x,y)")
```
`st_segmentize()` adds points to straight line sections of a lines or polygon object:
```{r,fig=TRUE}
par(mfrow=c(1,3),mar=c(1,1,0,0))
pts = rbind(c(0,0),c(1,0),c(2,1),c(3,1))
ls = st_linestring(pts)
plot(ls)
points(pts)
ls.seg = st_segmentize(ls, 0.3)
plot(ls.seg)
pts = ls.seg
points(pts)
pol = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0))))
pol.seg = st_segmentize(pol, 0.3)
plot(pol.seg, col = 'grey')
points(pol.seg[[1]])
```
`st_polygonize()` polygonizes a multilinestring, as long as the points form a closed polygon:
```{r,fig=TRUE}
par(mfrow=c(1,2),mar=c(0,0,1,0))
mls = st_multilinestring(list(matrix(c(0,0,0,1,1,1,0,0),,2,byrow=TRUE)))
x = st_polygonize(mls)
plot(mls, col = 'grey')
title("multilinestring")
plot(x, col = 'grey')
title("polygon")
```
|