File: image-interact.R

package info (click to toggle)
r-cran-shiny 1.0.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,080 kB
  • ctags: 290
  • sloc: makefile: 22; sh: 13
file content (437 lines) | stat: -rw-r--r-- 15,585 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#' Find rows of data that are selected by a brush
#'
#' This function returns rows from a data frame which are under a brush used
#' with \code{\link{plotOutput}}.
#'
#' It is also possible for this function to return all rows from the input data
#' frame, but with an additional column \code{selected_}, which indicates which
#' rows of the input data frame are selected by the brush (\code{TRUE} for
#' selected, \code{FALSE} for not-selected). This is enabled by setting
#' \code{allRows=TRUE} option.
#'
#' The \code{xvar}, \code{yvar}, \code{panelvar1}, and \code{panelvar2}
#' arguments specify which columns in the data correspond to the x variable, y
#' variable, and panel variables of the plot. For example, if your plot is
#' \code{plot(x=cars$speed, y=cars$dist)}, and your brush is named
#' \code{"cars_brush"}, then you would use \code{brushedPoints(cars,
#' input$cars_brush, "speed", "dist")}.
#'
#' For plots created with ggplot2, it should not be necessary to specify the
#' column names; that information will already be contained in the brush,
#' provided that variables are in the original data, and not computed. For
#' example, with \code{ggplot(cars, aes(x=speed, y=dist)) + geom_point()}, you
#' could use \code{brushedPoints(cars, input$cars_brush)}. If, however, you use
#' a computed column, like \code{ggplot(cars, aes(x=speed/2, y=dist)) +
#' geom_point()}, then it will not be able to automatically extract column names
#' and filter on them. If you want to use this function to filter data, it is
#' recommended that you not use computed columns; instead, modify the data
#' first, and then make the plot with "raw" columns in the modified data.
#'
#' If a specified x or y column is a factor, then it will be coerced to an
#' integer vector. If it is a character vector, then it will be coerced to a
#' factor and then integer vector. This means that the brush will be considered
#' to cover a given character/factor value when it covers the center value.
#'
#' If the brush is operating in just the x or y directions (e.g., with
#' \code{brushOpts(direction = "x")}, then this function will filter out points
#' using just the x or y variable, whichever is appropriate.
#'
#' @param brush The data from a brush, such as \code{input$plot_brush}.
#' @param df A data frame from which to select rows.
#' @param xvar,yvar A string with the name of the variable on the x or y axis.
#'   This must also be the name of a column in \code{df}. If absent, then this
#'   function will try to infer the variable from the brush (only works for
#'   ggplot2).
#' @param panelvar1,panelvar2 Each of these is a string with the name of a panel
#'   variable. For example, if with ggplot2, you facet on a variable called
#'   \code{cyl}, then you can use \code{"cyl"} here. However, specifying the
#'   panel variable should not be necessary with ggplot2; Shiny should be able
#'   to auto-detect the panel variable.
#' @param allRows If \code{FALSE} (the default) return a data frame containing
#'   the selected rows. If \code{TRUE}, the input data frame will have a new
#'   column, \code{selected_}, which indicates whether the row was inside the
#'   brush (\code{TRUE}) or outside the brush (\code{FALSE}).
#'
#' @seealso \code{\link{plotOutput}} for example usage.
#' @export
brushedPoints <- function(df, brush, xvar = NULL, yvar = NULL,
                          panelvar1 = NULL, panelvar2 = NULL,
                          allRows = FALSE) {
  if (is.null(brush)) {
    if (allRows)
      df$selected_ <- FALSE
    else
      df <- df[0, , drop = FALSE]

    return(df)
  }

  if (is.null(brush$xmin)) {
    stop("brushedPoints requires a brush object with xmin, xmax, ymin, and ymax.")
  }

  # Which direction(s) the brush is selecting over. Direction can be 'x', 'y',
  # or 'xy'.
  use_x <- grepl("x", brush$direction)
  use_y <- grepl("y", brush$direction)

  # Try to extract vars from brush object
  xvar      <- xvar      %OR% brush$mapping$x
  yvar      <- yvar      %OR% brush$mapping$y
  panelvar1 <- panelvar1 %OR% brush$mapping$panelvar1
  panelvar2 <- panelvar2 %OR% brush$mapping$panelvar2

  # Filter out x and y values
  keep_rows <- rep(TRUE, nrow(df))
  if (use_x) {
    if (is.null(xvar))
      stop("brushedPoints: not able to automatically infer `xvar` from brush")
    # Extract data values from the data frame
    x <- asNumber(df[[xvar]])
    keep_rows <- keep_rows & (x >= brush$xmin & x <= brush$xmax)
  }
  if (use_y) {
    if (is.null(yvar))
      stop("brushedPoints: not able to automatically infer `yvar` from brush")
    y <- asNumber(df[[yvar]])
    keep_rows <- keep_rows & (y >= brush$ymin & y <= brush$ymax)
  }

  # Find which rows are matches for the panel vars (if present)
  if (!is.null(panelvar1))
    keep_rows <- keep_rows & panelMatch(brush$panelvar1, df[[panelvar1]])
  if (!is.null(panelvar2))
    keep_rows <- keep_rows & panelMatch(brush$panelvar2, df[[panelvar2]])

  if (allRows) {
    df$selected_ <- keep_rows
    df
  } else {
    df[keep_rows, , drop = FALSE]
  }
}

# The `brush` data structure will look something like the examples below.
# For base graphics, `mapping` is empty, and there are no panelvars:
# List of 8
#  $ xmin   : num 3.73
#  $ xmax   : num 4.22
#  $ ymin   : num 13.9
#  $ ymax   : num 19.8
#  $ mapping: Named list()
#  $ domain :List of 4
#   ..$ left  : num 1.36
#   ..$ right : num 5.58
#   ..$ bottom: num 9.46
#   ..$ top   : num 34.8
#  $ range  :List of 4
#   ..$ left  : num 58
#   ..$ right : num 429
#   ..$ bottom: num 226
#   ..$ top   : num 58
#  $ log    :List of 2
#   ..$ x: NULL
#   ..$ y: NULL
#  $ direction: chr "y"
#
# For ggplot2, the mapping vars usually will be included, and if faceting is
# used, they will be listed as panelvars:
# List of 10
#  $ xmin     : num 3.18
#  $ xmax     : num 3.78
#  $ ymin     : num 17.1
#  $ ymax     : num 20.4
#  $ panelvar1: int 6
#  $ panelvar2: int 0
#  $ mapping  :List of 4
#   ..$ x        : chr "wt"
#   ..$ y        : chr "mpg"
#   ..$ panelvar1: chr "cyl"
#   ..$ panelvar2: chr "am"
#  $ domain   :List of 4
#   ..$ left  : num 1.32
#   ..$ right : num 5.62
#   ..$ bottom: num 9.22
#   ..$ top   : num 35.1
#  $ range    :List of 4
#   ..$ left  : num 172
#   ..$ right : num 300
#   ..$ bottom: num 144
#   ..$ top   : num 28.5
#  $ log      :List of 2
#   ..$ x: NULL
#   ..$ y: NULL
#  $ direction: chr "y"


#'Find rows of data that are near a click/hover/double-click
#'
#'This function returns rows from a data frame which are near a click, hover, or
#'double-click, when used with \code{\link{plotOutput}}. The rows will be sorted
#'by their distance to the mouse event.
#'
#'It is also possible for this function to return all rows from the input data
#'frame, but with an additional column \code{selected_}, which indicates which
#'rows of the input data frame are selected by the brush (\code{TRUE} for
#'selected, \code{FALSE} for not-selected). This is enabled by setting
#'\code{allRows=TRUE} option. If this is used, the resulting data frame will not
#'be sorted by distance to the mouse event.
#'
#'The \code{xvar}, \code{yvar}, \code{panelvar1}, and \code{panelvar2} arguments
#'specify which columns in the data correspond to the x variable, y variable,
#'and panel variables of the plot. For example, if your plot is
#'\code{plot(x=cars$speed, y=cars$dist)}, and your click variable is named
#'\code{"cars_click"}, then you would use \code{nearPoints(cars,
#'input$cars_brush, "speed", "dist")}.
#'
#'@inheritParams brushedPoints
#'@param coordinfo The data from a mouse event, such as \code{input$plot_click}.
#'@param threshold A maxmimum distance to the click point; rows in the data
#'  frame where the distance to the click is less than \code{threshold} will be
#'  returned.
#'@param maxpoints Maximum number of rows to return. If NULL (the default),
#'  return all rows that are within the threshold distance.
#'@param addDist If TRUE, add a column named \code{dist_} that contains the
#'  distance from the coordinate to the point, in pixels. When no mouse event
#'  has yet occured, the value of \code{dist_} will be \code{NA}.
#'@param allRows If \code{FALSE} (the default) return a data frame containing
#'  the selected rows. If \code{TRUE}, the input data frame will have a new
#'  column, \code{selected_}, which indicates whether the row was inside the
#'  selected by the mouse event (\code{TRUE}) or not (\code{FALSE}).
#'
#'@seealso \code{\link{plotOutput}} for more examples.
#'
#' @examples
#' \dontrun{
#' # Note that in practice, these examples would need to go in reactives
#' # or observers.
#'
#' # This would select all points within 5 pixels of the click
#' nearPoints(mtcars, input$plot_click)
#'
#' # Select just the nearest point within 10 pixels of the click
#' nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1)
#'
#' }
#'@export
nearPoints <- function(df, coordinfo, xvar = NULL, yvar = NULL,
                       panelvar1 = NULL, panelvar2 = NULL,
                       threshold = 5, maxpoints = NULL, addDist = FALSE,
                       allRows = FALSE) {
  if (is.null(coordinfo)) {
    if (addDist)
      df$dist_ <- NA_real_

    if (allRows)
      df$selected_ <- FALSE
    else
      df <- df[0, , drop = FALSE]

    return(df)
  }

  if (is.null(coordinfo$x)) {
    stop("nearPoints requires a click/hover/double-click object with x and y values.")
  }

  # Try to extract vars from coordinfo object
  xvar      <- xvar      %OR% coordinfo$mapping$x
  yvar      <- yvar      %OR% coordinfo$mapping$y
  panelvar1 <- panelvar1 %OR% coordinfo$mapping$panelvar1
  panelvar2 <- panelvar2 %OR% coordinfo$mapping$panelvar2

  if (is.null(xvar))
    stop("nearPoints: not able to automatically infer `xvar` from coordinfo")
  if (is.null(yvar))
    stop("nearPoints: not able to automatically infer `yvar` from coordinfo")

  # Extract data values from the data frame
  x <- asNumber(df[[xvar]])
  y <- asNumber(df[[yvar]])

  # Get the pixel coordinates of the point
  coordPx <- scaleCoords(coordinfo$x, coordinfo$y, coordinfo)

  # Get pixel coordinates of data points
  dataPx <- scaleCoords(x, y, coordinfo)

  # Distances of data points to coordPx
  dists <- sqrt((dataPx$x - coordPx$x) ^ 2 + (dataPx$y - coordPx$y) ^ 2)

  if (addDist)
    df$dist_ <- dists

  keep_rows <- (dists <= threshold)

  # Find which rows are matches for the panel vars (if present)
  if (!is.null(panelvar1))
    keep_rows <- keep_rows & panelMatch(coordinfo$panelvar1, df[[panelvar1]])
  if (!is.null(panelvar2))
    keep_rows <- keep_rows & panelMatch(coordinfo$panelvar2, df[[panelvar2]])

  # Track the indices to keep
  keep_idx <- which(keep_rows)

  # Order by distance
  dists <- dists[keep_idx]
  keep_idx <- keep_idx[order(dists)]

  # Keep max number of rows
  if (!is.null(maxpoints) && length(keep_idx) > maxpoints) {
    keep_idx <- keep_idx[seq_len(maxpoints)]
  }

  if (allRows) {
    # Add selected_ column if needed
    df$selected_ <- FALSE
    df$selected_[keep_idx] <- TRUE

  } else {
    # If we don't keep all rows, return just the selected rows, sorted by
    # distance.
    df <- df[keep_idx, , drop = FALSE]
  }

  df
}

# The coordinfo data structure will look something like the examples below.
# For base graphics, `mapping` is empty, and there are no panelvars:
# List of 7
#  $ x      : num 4.37
#  $ y      : num 12
#  $ mapping: Named list()
#  $ domain :List of 4
#   ..$ left  : num 1.36
#   ..$ right : num 5.58
#   ..$ bottom: num 9.46
#   ..$ top   : num 34.8
#  $ range  :List of 4
#   ..$ left  : num 58
#   ..$ right : num 429
#   ..$ bottom: num 226
#   ..$ top   : num 58
#  $ log    :List of 2
#   ..$ x: NULL
#   ..$ y: NULL
#  $ .nonce : num 0.343
#
# For ggplot2, the mapping vars usually will be included, and if faceting is
# used, they will be listed as panelvars:
# List of 9
#  $ x        : num 3.78
#  $ y        : num 17.1
#  $ panelvar1: int 6
#  $ panelvar2: int 0
#  $ mapping  :List of 4
#   ..$ x        : chr "wt"
#   ..$ y        : chr "mpg"
#   ..$ panelvar1: chr "cyl"
#   ..$ panelvar2: chr "am"
#  $ domain   :List of 4
#   ..$ left  : num 1.32
#   ..$ right : num 5.62
#   ..$ bottom: num 9.22
#   ..$ top   : num 35.1
#  $ range    :List of 4
#   ..$ left  : num 172
#   ..$ right : num 300
#   ..$ bottom: num 144
#   ..$ top   : num 28.5
#  $ log      :List of 2
#   ..$ x: NULL
#   ..$ y: NULL
#  $ .nonce   : num 0.603



# Coerce various types of variables to numbers. This works for Date, POSIXt,
# characters, and factors. Used because the mouse coords are numeric.
asNumber <- function(x) {
  if (is.character(x)) x <- as.factor(x)
  if (is.factor(x)) x <- as.integer(x)
  as.numeric(x)
}

# Given a panelvar value and a vector x, return logical vector indicating which
# items match the panelvar value. Because the panelvar value is always a
# string but the vector could be numeric, it might be necessary to coerce the
# panelvar to a number before comparing to the vector.
panelMatch <- function(search_value, x) {
  if (is.numeric(x)) search_value <- as.numeric(search_value)
  x == search_value
}

#  ----------------------------------------------------------------------------
# Scaling functions
# These functions have direct analogs in Javascript code, except these are
# vectorized for x and y.

# Map a value x from a domain to a range. If clip is true, clip it to the
# range.
mapLinear <- function(x, domainMin, domainMax, rangeMin, rangeMax, clip = TRUE) {
  factor <- (rangeMax - rangeMin) / (domainMax - domainMin)
  val <- x - domainMin
  newval <- (val * factor) + rangeMin

  if (clip) {
    maxval <- max(rangeMax, rangeMin)
    minval <- min(rangeMax, rangeMin)
    newval[newval > maxval] <- maxval
    newval[newval < minval] <- minval
  }
  newval
}

# Scale val from domain to range. If logbase is present, use log scaling.
scale1D <- function(val, domainMin, domainMax, rangeMin, rangeMax,
                    logbase = NULL, clip = TRUE) {
  if (!is.null(logbase))
    val <- log(val, logbase)
  mapLinear(val, domainMin, domainMax, rangeMin, rangeMax, clip)
}

# Inverse scale val, from range to domain. If logbase is present, use inverse
# log (power) transformation.
scaleInv1D <- function(val, domainMin, domainMax, rangeMin, rangeMax,
                       logbase = NULL, clip = TRUE) {
    res <- mapLinear(val, rangeMin, rangeMax, domainMin, domainMax, clip)
    if (!is.null(logbase))
      res <- logbase ^ res
    res
}

# Scale x and y coordinates from domain to range, using information in
# scaleinfo. scaleinfo must contain items $domain, $range, and $log. The
# scaleinfo object corresponds to one element from the coordmap object generated
# by getPrevPlotCoordmap or getGgplotCoordmap; it is the scaling information for
# one panel in a plot.
scaleCoords <- function(x, y, scaleinfo) {
  if (is.null(scaleinfo))
    return(NULL)

  domain <- scaleinfo$domain
  range <- scaleinfo$range
  log <- scaleinfo$log

  list(
    x = scale1D(x, domain$left, domain$right, range$left, range$right, log$x),
    y = scale1D(y, domain$bottom, domain$top, range$bottom, range$top, log$y)
  )
}

# Inverse scale x and y coordinates from range to domain, using information in
# scaleinfo.
scaleInvCoords <- function(x, y, scaleinfo) {
  if (is.null(scaleinfo))
    return(NULL)

  domain <- scaleinfo$domain
  range <- scaleinfo$range
  log <- scaleinfo$log

  list(
    x = scaleInv1D(x, domain$left, domain$right, range$left, range$right, log$x),
    y = scaleInv1D(y, domain$bottom, domain$top, range$bottom, range$top, log$y)
  )
}