File: render-plot.R

package info (click to toggle)
r-cran-shiny 1.0.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,080 kB
  • ctags: 290
  • sloc: makefile: 22; sh: 13
file content (748 lines) | stat: -rw-r--r-- 26,600 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
#' Plot Output
#'
#' Renders a reactive plot that is suitable for assigning to an \code{output}
#' slot.
#'
#' The corresponding HTML output tag should be \code{div} or \code{img} and have
#' the CSS class name \code{shiny-plot-output}.
#'
#' @section Interactive plots:
#'
#'   With ggplot2 graphics, the code in \code{renderPlot} should return a ggplot
#'   object; if instead the code prints the ggplot2 object with something like
#'   \code{print(p)}, then the coordinates for interactive graphics will not be
#'   properly scaled to the data space.
#'
#'   See \code{\link{plotOutput}} for more information about interactive plots.
#'
#' @seealso For the corresponding client-side output function, and example
#'   usage, see \code{\link{plotOutput}}. For more details on how the plots are
#'   generated, and how to control the output, see \code{\link{plotPNG}}.
#'
#' @param expr An expression that generates a plot.
#' @param width,height The width/height of the rendered plot, in pixels; or
#'   \code{'auto'} to use the \code{offsetWidth}/\code{offsetHeight} of the HTML
#'   element that is bound to this plot. You can also pass in a function that
#'   returns the width/height in pixels or \code{'auto'}; in the body of the
#'   function you may reference reactive values and functions. When rendering an
#'   inline plot, you must provide numeric values (in pixels) to both
#'   \code{width} and \code{height}.
#' @param res Resolution of resulting plot, in pixels per inch. This value is
#'   passed to \code{\link[grDevices]{png}}. Note that this affects the resolution of PNG
#'   rendering in R; it won't change the actual ppi of the browser.
#' @param ... Arguments to be passed through to \code{\link[grDevices]{png}}.
#'   These can be used to set the width, height, background color, etc.
#' @param env The environment in which to evaluate \code{expr}.
#' @param quoted Is \code{expr} a quoted expression (with \code{quote()})? This
#'   is useful if you want to save an expression in a variable.
#' @param execOnResize If \code{FALSE} (the default), then when a plot is
#'   resized, Shiny will \emph{replay} the plot drawing commands with
#'   \code{\link[grDevices]{replayPlot}()} instead of re-executing \code{expr}.
#'   This can result in faster plot redrawing, but there may be rare cases where
#'   it is undesirable. If you encounter problems when resizing a plot, you can
#'   have Shiny re-execute the code on resize by setting this to \code{TRUE}.
#' @param outputArgs A list of arguments to be passed through to the implicit
#'   call to \code{\link{plotOutput}} when \code{renderPlot} is used in an
#'   interactive R Markdown document.
#' @export
renderPlot <- function(expr, width='auto', height='auto', res=72, ...,
                       env=parent.frame(), quoted=FALSE,
                       execOnResize=FALSE, outputArgs=list()
) {
  # This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
  # is called
  installExprFunction(expr, "func", env, quoted, ..stacktraceon = TRUE)

  args <- list(...)

  if (is.function(width))
    widthWrapper <- reactive({ width() })
  else
    widthWrapper <- function() { width }

  if (is.function(height))
    heightWrapper <- reactive({ height() })
  else
    heightWrapper <- function() { height }

  # A modified version of print.ggplot which returns the built ggplot object
  # as well as the gtable grob. This overrides the ggplot::print.ggplot
  # method, but only within the context of renderPlot. The reason this needs
  # to be a (pseudo) S3 method is so that, if an object has a class in
  # addition to ggplot, and there's a print method for that class, that we
  # won't override that method. https://github.com/rstudio/shiny/issues/841
  print.ggplot <- function(x) {
    grid::grid.newpage()

    build <- ggplot2::ggplot_build(x)

    gtable <- ggplot2::ggplot_gtable(build)
    grid::grid.draw(gtable)

    structure(list(
      build = build,
      gtable = gtable
    ), class = "ggplot_build_gtable")
  }


  getDims <- function() {
    width <- widthWrapper()
    height <- heightWrapper()

    # Note that these are reactive calls. A change to the width and height
    # will inherently cause a reactive plot to redraw (unless width and
    # height were explicitly specified).
    if (width == 'auto')
      width <- session$clientData[[paste0('output_', outputName, '_width')]]
    if (height == 'auto')
      height <- session$clientData[[paste0('output_', outputName, '_height')]]

    list(width = width, height = height)
  }

  # Vars to store session and output, so that they can be accessed from
  # the plotObj() reactive.
  session <- NULL
  outputName <- NULL

  # This function is the one that's returned from renderPlot(), and gets
  # wrapped in an observer when the output value is assigned. The expression
  # passed to renderPlot() is actually run in plotObj(); this function can only
  # replay a plot if the width/height changes.
  renderFunc <- function(shinysession, name, ...) {
    session <<- shinysession
    outputName <<- name

    dims <- getDims()

    if (is.null(dims$width) || is.null(dims$height) ||
        dims$width <= 0 || dims$height <= 0) {
      return(NULL)
    }

    # The reactive that runs the expr in renderPlot()
    plotData <- plotObj()

    img <- plotData$img

    # If only the width/height have changed, simply replay the plot and make a
    # new img.
    if (dims$width != img$width || dims$height != img$height) {
      pixelratio <- session$clientData$pixelratio %OR% 1

      coordmap <- NULL
      plotFunc <- function() {
        ..stacktraceon..(grDevices::replayPlot(plotData$recordedPlot))

        # Coordmap must be recalculated after replaying plot, because pixel
        # dimensions will have changed.
        if (inherits(plotData$plotResult, "ggplot_build_gtable")) {
          coordmap <<- getGgplotCoordmap(plotData$plotResult, pixelratio, res)
        } else {
          coordmap <<- getPrevPlotCoordmap(dims$width, dims$height)
        }
      }
      outfile <- ..stacktraceoff..(
        plotPNG(plotFunc, width = dims$width*pixelratio, height = dims$height*pixelratio,
                res = res*pixelratio)
      )
      on.exit(unlink(outfile))

      img <- dropNulls(list(
        src = session$fileUrl(name, outfile, contentType='image/png'),
        width = dims$width,
        height = dims$height,
        coordmap = coordmap,
        # Get coordmap error message if present
        error = attr(coordmap, "error", exact = TRUE)
      ))
    }

    img
  }


  plotObj <- reactive(label = "plotObj", {
    if (execOnResize) {
      dims <- getDims()
    } else {
      isolate({ dims <- getDims() })
    }

    if (is.null(dims$width) || is.null(dims$height) ||
        dims$width <= 0 || dims$height <= 0) {
      return(NULL)
    }

    # Resolution multiplier
    pixelratio <- session$clientData$pixelratio %OR% 1

    plotResult <- NULL
    recordedPlot <- NULL
    coordmap <- NULL
    plotFunc <- function() {
      success <-FALSE
      tryCatch(
        {
          # This is necessary to enable displaylist recording
          grDevices::dev.control(displaylist = "enable")

          # Actually perform the plotting
          result <- withVisible(func())
          success <- TRUE
        },
        finally = {
          if (!success) {
            # If there was an error in making the plot, there's a good chance
            # it's "Error in plot.new: figure margins too large". We need to
            # take a reactive dependency on the width and height, so that the
            # user's plotting code will re-execute when the plot is resized,
            # instead of just replaying the previous plot (which errored).
            getDims()
          }
        }
      )

      if (result$visible) {
        # Use capture.output to squelch printing to the actual console; we
        # are only interested in plot output
        utils::capture.output({
          # This ..stacktraceon.. negates the ..stacktraceoff.. that wraps
          # the call to plotFunc. The value needs to be printed just in case
          # it's an object that requires printing to generate plot output,
          # similar to ggplot2. But for base graphics, it would already have
          # been rendered when func was called above, and the print should
          # have no effect.
          plotResult <<- ..stacktraceon..(print(result$value))
        })
      }

      recordedPlot <<- grDevices::recordPlot()

      if (inherits(plotResult, "ggplot_build_gtable")) {
        coordmap <<- getGgplotCoordmap(plotResult, pixelratio, res)
      } else {
        coordmap <<- getPrevPlotCoordmap(dims$width, dims$height)
      }
    }

    # This ..stacktraceoff.. is matched by the `func` function's
    # wrapFunctionLabel(..stacktraceon=TRUE) call near the beginning of
    # renderPlot, and by the ..stacktraceon.. in plotFunc where ggplot objects
    # are printed
    outfile <- ..stacktraceoff..(
      do.call(plotPNG, c(plotFunc, width=dims$width*pixelratio,
        height=dims$height*pixelratio, res=res*pixelratio, args))
    )
    on.exit(unlink(outfile))

    list(
      # img is the content that gets sent to the client.
      img = dropNulls(list(
        src = session$fileUrl(outputName, outfile, contentType='image/png'),
        width = dims$width,
        height = dims$height,
        coordmap = coordmap,
        # Get coordmap error message if present.
        error = attr(coordmap, "error", exact = TRUE)
      )),
      # Returned value from expression in renderPlot() -- may be a printable
      # object like ggplot2. Needed just in case we replayPlot and need to get
      # a coordmap again.
      plotResult = plotResult,
      recordedPlot = recordedPlot
    )
  })


  # If renderPlot isn't going to adapt to the height of the div, then the
  # div needs to adapt to the height of renderPlot. By default, plotOutput
  # sets the height to 400px, so to make it adapt we need to override it
  # with NULL.
  outputFunc <- plotOutput
  if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL)

  markRenderFunction(outputFunc, renderFunc, outputArgs = outputArgs)
}

# The coordmap extraction functions below return something like the examples
# below. For base graphics:
# plot(mtcars$wt, mtcars$mpg)
# str(getPrevPlotCoordmap(400, 300))
# List of 1
#  $ :List of 4
#   ..$ domain :List of 4
#   .. ..$ left  : num 1.36
#   .. ..$ right : num 5.58
#   .. ..$ bottom: num 9.46
#   .. ..$ top   : num 34.8
#   ..$ range  :List of 4
#   .. ..$ left  : num 50.4
#   .. ..$ right : num 373
#   .. ..$ bottom: num 199
#   .. ..$ top   : num 79.6
#   ..$ log    :List of 2
#   .. ..$ x: NULL
#   .. ..$ y: NULL
#   ..$ mapping: Named list()
#
# For ggplot2, it might be something like:
# p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
# str(getGgplotCoordmap(p, 1))
# List of 1
#  $ :List of 10
#   ..$ panel     : int 1
#   ..$ row       : int 1
#   ..$ col       : int 1
#   ..$ panel_vars: Named list()
#   ..$ scale_x   : int 1
#   ..$ scale_y   : int 1
#   ..$ log       :List of 2
#   .. ..$ x: NULL
#   .. ..$ y: NULL
#   ..$ domain    :List of 4
#   .. ..$ left  : num 1.32
#   .. ..$ right : num 5.62
#   .. ..$ bottom: num 9.22
#   .. ..$ top   : num 35.1
#   ..$ mapping   :List of 2
#   .. ..$ x: chr "wt"
#   .. ..$ y: chr "mpg"
#   ..$ range     :List of 4
#   .. ..$ left  : num 40.8
#   .. ..$ right : num 446
#   .. ..$ bottom: num 263
#   .. ..$ top   : num 14.4
#
# With a faceted ggplot2 plot, the outer list contains two objects, each of
# which represents one panel. In this example, there is one panelvar, but there
# can be up to two of them.
# mtc <- mtcars
# mtc$am <- factor(mtc$am)
# p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() + facet_wrap(~ am)
# str(getGgplotCoordmap(p, 1))
# List of 2
#  $ :List of 10
#   ..$ panel     : int 1
#   ..$ row       : int 1
#   ..$ col       : int 1
#   ..$ panel_vars:List of 1
#   .. ..$ panelvar1: Factor w/ 2 levels "0","1": 1
#   ..$ scale_x   : int 1
#   ..$ scale_y   : int 1
#   ..$ log       :List of 2
#   .. ..$ x: NULL
#   .. ..$ y: NULL
#   ..$ domain    :List of 4
#   .. ..$ left  : num 1.32
#   .. ..$ right : num 5.62
#   .. ..$ bottom: num 9.22
#   .. ..$ top   : num 35.1
#   ..$ mapping   :List of 3
#   .. ..$ x        : chr "wt"
#   .. ..$ y        : chr "mpg"
#   .. ..$ panelvar1: chr "am"
#   ..$ range     :List of 4
#   .. ..$ left  : num 45.6
#   .. ..$ right : num 317
#   .. ..$ bottom: num 251
#   .. ..$ top   : num 35.7
#  $ :List of 10
#   ..$ panel     : int 2
#   ..$ row       : int 1
#   ..$ col       : int 2
#   ..$ panel_vars:List of 1
#   .. ..$ panelvar1: Factor w/ 2 levels "0","1": 2
#   ..$ scale_x   : int 1
#   ..$ scale_y   : int 1
#   ..$ log       :List of 2
#   .. ..$ x: NULL
#   .. ..$ y: NULL
#   ..$ domain    :List of 4
#   .. ..$ left  : num 1.32
#   .. ..$ right : num 5.62
#   .. ..$ bottom: num 9.22
#   .. ..$ top   : num 35.1
#   ..$ mapping   :List of 3
#   .. ..$ x        : chr "wt"
#   .. ..$ y        : chr "mpg"
#   .. ..$ panelvar1: chr "am"
#   ..$ range     :List of 4
#   .. ..$ left  : num 322
#   .. ..$ right : num 594
#   .. ..$ bottom: num 251
#   .. ..$ top   : num 35.7


# Get a coordmap for the previous plot made with base graphics.
# Requires width and height of output image, in pixels.
# Must be called before the graphics device is closed.
getPrevPlotCoordmap <- function(width, height) {
  usrCoords <- graphics::par('usr')
  usrBounds <- usrCoords
  if (graphics::par('xlog')) {
    usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)]
  }
  if (graphics::par('ylog')) {
    usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)]
  }

  # Wrapped in double list because other types of plots can have multiple panels.
  list(list(
    # Bounds of the plot area, in data space
    domain = list(
      left = usrCoords[1],
      right = usrCoords[2],
      bottom = usrCoords[3],
      top = usrCoords[4]
    ),
    # The bounds of the plot area, in DOM pixels
    range = list(
      left = graphics::grconvertX(usrBounds[1], 'user', 'nfc') * width,
      right = graphics::grconvertX(usrBounds[2], 'user', 'nfc') * width,
      bottom = (1-graphics::grconvertY(usrBounds[3], 'user', 'nfc')) * height - 1,
      top = (1-graphics::grconvertY(usrBounds[4], 'user', 'nfc')) * height - 1
    ),
    log = list(
      x = if (graphics::par('xlog')) 10 else NULL,
      y = if (graphics::par('ylog')) 10 else NULL
    ),
    # We can't extract the original variable names from a base graphic.
    # `mapping` is an empty _named_ list, so that it is converted to an object
    # (not an array) in JSON.
    mapping = list(x = NULL)[0]
  ))
}


# Given a ggplot_build_gtable object, return a coordmap for it.
getGgplotCoordmap <- function(p, pixelratio, res) {
  # Structure of ggplot objects changed after 2.1.0
  new_ggplot <- (utils::packageVersion("ggplot2") > "2.1.0")

  if (!inherits(p, "ggplot_build_gtable"))
    return(NULL)

  # Given a built ggplot object, return x and y domains (data space coords) for
  # each panel.
  find_panel_info <- function(b) {
    if (new_ggplot) {
      layout <- b$layout$panel_layout
    } else {
      layout <- b$panel$layout
    }
    # Convert factor to numbers
    layout$PANEL <- as.integer(as.character(layout$PANEL))

    # Names of facets
    facet_vars <- NULL
    if (new_ggplot) {
      facet <- b$layout$facet
      if (inherits(facet, "FacetGrid")) {
        facet_vars <- vapply(c(facet$params$cols, facet$params$rows), as.character, character(1))
      } else if (inherits(facet, "FacetWrap")) {
        facet_vars <- vapply(facet$params$facets, as.character, character(1))
      }
    } else {
      facet <- b$plot$facet
      if (inherits(facet, "grid")) {
        facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1))
      } else if (inherits(facet, "wrap")) {
        facet_vars <- vapply(facet$facets, as.character, character(1))
      }
    }

    # Iterate over each row in the layout data frame
    lapply(seq_len(nrow(layout)), function(i) {
      # Slice out one row
      l <- layout[i, ]

      scale_x <- l$SCALE_X
      scale_y <- l$SCALE_Y

      mapping <- find_plot_mappings(b)

      # For each of the faceting variables, get the value of that variable in
      # the current panel. Default to empty _named_ list so that it's sent as a
      # JSON object, not array.
      panel_vars <- list(a = NULL)[0]
      for (i in seq_along(facet_vars)) {
        var_name <- facet_vars[[i]]
        vname <- paste0("panelvar", i)

        mapping[[vname]] <- var_name
        panel_vars[[vname]] <- l[[var_name]]
      }

      list(
        panel   = l$PANEL,
        row     = l$ROW,
        col     = l$COL,
        panel_vars = panel_vars,
        scale_x = scale_x,
        scale_y = scale_x,
        log     = check_log_scales(b, scale_x, scale_y),
        domain  = find_panel_domain(b, l$PANEL, scale_x, scale_y),
        mapping = mapping
      )
    })
  }

  # Given a single range object (representing the data domain) from a built
  # ggplot object, return the domain.
  find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) {
    if (new_ggplot) {
      range <- b$layout$panel_ranges[[panel_num]]
    } else {
      range <- b$panel$ranges[[panel_num]]
    }
    domain <- list(
      left   = range$x.range[1],
      right  = range$x.range[2],
      bottom = range$y.range[1],
      top    = range$y.range[2]
    )

    # Check for reversed scales
    if (new_ggplot) {
      xscale <- b$layout$panel_scales$x[[scalex_num]]
      yscale <- b$layout$panel_scales$y[[scaley_num]]
    } else {
      xscale <- b$panel$x_scales[[scalex_num]]
      yscale <- b$panel$y_scales[[scaley_num]]
    }
    if (!is.null(xscale$trans) && xscale$trans$name == "reverse") {
      domain$left  <- -domain$left
      domain$right <- -domain$right
    }
    if (!is.null(yscale$trans) && yscale$trans$name == "reverse") {
      domain$top    <- -domain$top
      domain$bottom <- -domain$bottom
    }

    domain
  }

  # Given built ggplot object, return object with the log base for x and y if
  # there are log scales or coord transforms.
  check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) {

    # Given a vector of transformation names like c("log-10", "identity"),
    # return the first log base, like 10. If none are present, return NULL.
    extract_log_base <- function(names) {
      names <- names[grepl("^log-", names)]

      if (length(names) == 0)
        return(NULL)

      names <- names[1]

      as.numeric(sub("^log-", "", names))
    }

    # Look for log scales and log coord transforms. People shouldn't use both.
    x_names <- character(0)
    y_names <- character(0)

    # Continuous scales have a trans; discrete ones don't
    if (new_ggplot) {
      if (!is.null(b$layout$panel_scales$x[[scalex_num]]$trans))
        x_names <- b$layout$panel_scales$x[[scalex_num]]$trans$name
      if (!is.null(b$layout$panel_scales$y[[scaley_num]]$trans))
        y_names <- b$layout$panel_scales$y[[scaley_num]]$trans$name

    } else {
      if (!is.null(b$panel$x_scales[[scalex_num]]$trans))
        x_names <- b$panel$x_scales[[scalex_num]]$trans$name
      if (!is.null(b$panel$y_scales[[scaley_num]]$trans))
        y_names <- b$panel$y_scales[[scaley_num]]$trans$name
    }

    coords <- b$plot$coordinates
    if (!is.null(coords$trans)) {
      if (!is.null(coords$trans$x))
        x_names <- c(x_names, coords$trans$x$name)
      if (!is.null(coords$trans$y))
        y_names <- c(y_names, coords$trans$y$name)
    }

    # Keep only scale/trans names that start with "log-"
    x_names <- x_names[grepl("^log-", x_names)]
    y_names <- y_names[grepl("^log-", y_names)]

    # Extract the log base from the trans name -- a string like "log-10".
    list(
      x = extract_log_base(x_names),
      y = extract_log_base(y_names)
    )
  }

  # Given a built ggplot object, return a named list of variables mapped to x
  # and y. This function will be called for each panel, but in practice the
  # result is always the same across panels, so we'll cache the result.
  mappings_cache <- NULL
  find_plot_mappings <- function(b) {
    if (!is.null(mappings_cache))
      return(mappings_cache)

    # lapply'ing as.character results in unexpected behavior for expressions
    # like `wt/2`. This works better.
    mappings <- as.list(as.character(b$plot$mapping))

    # If x or y mapping is missing, look in each layer for mappings and return
    # the first one.
    missing_mappings <- setdiff(c("x", "y"), names(mappings))
    if (length(missing_mappings) != 0) {
      # Grab mappings for each layer
      layer_mappings <- lapply(b$plot$layers, function(layer) {
        lapply(layer$mapping, as.character)
      })

      # Get just the first x or y value in the combined list of plot and layer
      # mappings.
      mappings <- c(list(mappings), layer_mappings)
      mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL),
        function(init, m) {
          if (is.null(init$x) && !is.null(m$x)) init$x <- m$x
          if (is.null(init$y) && !is.null(m$y)) init$y <- m$y
          init
        }
      )
    }

    # Look for CoordFlip
    if (inherits(b$plot$coordinates, "CoordFlip")) {
      mappings[c("x", "y")] <- mappings[c("y", "x")]
    }

    mappings_cache <<- mappings
    mappings
  }

  # Given a gtable object, return the x and y ranges (in pixel dimensions)
  find_panel_ranges <- function(g, pixelratio) {
    # Given a vector of unit objects, return logical vector indicating which ones
    # are "null" units. These units use the remaining available width/height --
    # that is, the space not occupied by elements that have an absolute size.
    is_null_unit <- function(x) {
      # A vector of units can be either a list of individual units (a unit.list
      # object), each with their own set of attributes, or an atomic vector with
      # one set of attributes. ggplot2 switched from the former (in version
      # 1.0.1) to the latter. We need to make sure that we get the correct
      # result in both cases.
      if (inherits(x, "unit.list")) {
        # For ggplot2 <= 1.0.1
        vapply(x, FUN.VALUE = logical(1), function(u) {
          isTRUE(attr(u, "unit", exact = TRUE) == "null")
        })
      } else {
        # For later versions of ggplot2
        attr(x, "unit", exact = TRUE) == "null"
      }
    }

    # Workaround for a bug in the quartz device. If you have a 400x400 image and
    # run `convertWidth(unit(1, "npc"), "native")`, the result will depend on
    # res setting of the device. If res=72, then it returns 400 (as expected),
    # but if, e.g., res=96, it will return 300, which is incorrect.
    devScaleFactor <- 1
    if (grepl("quartz", names(grDevices::dev.cur()), fixed = TRUE)) {
      devScaleFactor <- res / 72
    }

    # Convert a unit (or vector of units) to a numeric vector of pixel sizes
    h_px <- function(x) {
      devScaleFactor * grid::convertHeight(x, "native", valueOnly = TRUE)
    }
    w_px <- function(x) {
      devScaleFactor * grid::convertWidth(x, "native", valueOnly = TRUE)
    }

    # Given a vector of relative sizes (in grid units), and a function for
    # converting grid units to numeric pixels, return a numeric vector of
    # pixel sizes.
    find_px_sizes <- function(rel_sizes, unit_to_px) {
      # Total pixels (in height or width)
      total_px <- unit_to_px(grid::unit(1, "npc"))
      # Calculate size of all panel(s) together. Panels (and only panels) have
      # null size.
      null_idx <- is_null_unit(rel_sizes)
      # All the absolute heights. At this point, null heights are 0. We need to
      # calculate them separately and add them in later.
      px_sizes <- unit_to_px(rel_sizes)
      # Total size for panels is image size minus absolute (non-panel) elements
      panel_px_total <- total_px - sum(px_sizes)
      # Divide up the total panel size up into the panels (scaled by size)
      panel_sizes_rel <- as.numeric(rel_sizes[null_idx])
      panel_sizes_rel <- panel_sizes_rel / sum(panel_sizes_rel)
      px_sizes[null_idx] <- panel_px_total * panel_sizes_rel
      abs(px_sizes)
    }

    px_heights <- find_px_sizes(g$heights, h_px)
    px_widths <- find_px_sizes(g$widths, w_px)

    # Convert to absolute pixel positions
    x_pos <- cumsum(px_widths)
    y_pos <- cumsum(px_heights)

    # Match up the pixel dimensions to panels
    layout <- g$layout
    # For panels:
    # * For facet_wrap, they'll be named "panel-1", "panel-2", etc.
    # * For no facet or facet_grid, they'll just be named "panel". For
    #   facet_grid, we need to re-order the layout table. Assume that panel
    #   numbers go from left to right, then next row.
    # Assign a number to each panel, corresponding to PANEl in the built ggplot
    # object.
    layout <- layout[grepl("^panel", layout$name), ]
    layout <- layout[order(layout$t, layout$l), ]
    layout$panel <- seq_len(nrow(layout))

    # When using a HiDPI client on a Linux server, the pixel
    # dimensions are doubled, so we have to divide the dimensions by
    # `pixelratio`. When a HiDPI client is used on a Mac server (with
    # the quartz device), the pixel dimensions _aren't_ doubled, even though
    # the image has double size. In the latter case we don't have to scale the
    # numbers down.
    pix_ratio <- 1
    if (!grepl("^quartz", names(grDevices::dev.cur()))) {
      pix_ratio <- pixelratio
    }

    # Return list of lists, where each inner list has left, right, top, bottom
    # values for a panel
    lapply(seq_len(nrow(layout)), function(i) {
      p <- layout[i, , drop = FALSE]
      list(
        left   = x_pos[p$l - 1] / pix_ratio,
        right  = x_pos[p$r] / pix_ratio,
        bottom = y_pos[p$b] / pix_ratio,
        top    = y_pos[p$t - 1] / pix_ratio
      )
    })
  }


  tryCatch({
    # Get info from built ggplot object
    info <- find_panel_info(p$build)

    # Get ranges from gtable - it's possible for this to return more elements than
    # info, because it calculates positions even for panels that aren't present.
    # This can happen with facet_wrap.
    ranges <- find_panel_ranges(p$gtable, pixelratio)

    for (i in seq_along(info)) {
      info[[i]]$range <- ranges[[i]]
    }

    return(info)

  }, error = function(e) {
    # If there was an error extracting info from the ggplot object, just return
    # a list with the error message.
    return(structure(list(), error = e$message))
  })
}