1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
#' Plot Output
#'
#' Renders a reactive plot that is suitable for assigning to an \code{output}
#' slot.
#'
#' The corresponding HTML output tag should be \code{div} or \code{img} and have
#' the CSS class name \code{shiny-plot-output}.
#'
#' @section Interactive plots:
#'
#' With ggplot2 graphics, the code in \code{renderPlot} should return a ggplot
#' object; if instead the code prints the ggplot2 object with something like
#' \code{print(p)}, then the coordinates for interactive graphics will not be
#' properly scaled to the data space.
#'
#' See \code{\link{plotOutput}} for more information about interactive plots.
#'
#' @seealso For the corresponding client-side output function, and example
#' usage, see \code{\link{plotOutput}}. For more details on how the plots are
#' generated, and how to control the output, see \code{\link{plotPNG}}.
#'
#' @param expr An expression that generates a plot.
#' @param width,height The width/height of the rendered plot, in pixels; or
#' \code{'auto'} to use the \code{offsetWidth}/\code{offsetHeight} of the HTML
#' element that is bound to this plot. You can also pass in a function that
#' returns the width/height in pixels or \code{'auto'}; in the body of the
#' function you may reference reactive values and functions. When rendering an
#' inline plot, you must provide numeric values (in pixels) to both
#' \code{width} and \code{height}.
#' @param res Resolution of resulting plot, in pixels per inch. This value is
#' passed to \code{\link[grDevices]{png}}. Note that this affects the resolution of PNG
#' rendering in R; it won't change the actual ppi of the browser.
#' @param ... Arguments to be passed through to \code{\link[grDevices]{png}}.
#' These can be used to set the width, height, background color, etc.
#' @param env The environment in which to evaluate \code{expr}.
#' @param quoted Is \code{expr} a quoted expression (with \code{quote()})? This
#' is useful if you want to save an expression in a variable.
#' @param execOnResize If \code{FALSE} (the default), then when a plot is
#' resized, Shiny will \emph{replay} the plot drawing commands with
#' \code{\link[grDevices]{replayPlot}()} instead of re-executing \code{expr}.
#' This can result in faster plot redrawing, but there may be rare cases where
#' it is undesirable. If you encounter problems when resizing a plot, you can
#' have Shiny re-execute the code on resize by setting this to \code{TRUE}.
#' @param outputArgs A list of arguments to be passed through to the implicit
#' call to \code{\link{plotOutput}} when \code{renderPlot} is used in an
#' interactive R Markdown document.
#' @export
renderPlot <- function(expr, width='auto', height='auto', res=72, ...,
env=parent.frame(), quoted=FALSE,
execOnResize=FALSE, outputArgs=list()
) {
# This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
# is called
installExprFunction(expr, "func", env, quoted, ..stacktraceon = TRUE)
args <- list(...)
if (is.function(width))
widthWrapper <- reactive({ width() })
else
widthWrapper <- function() { width }
if (is.function(height))
heightWrapper <- reactive({ height() })
else
heightWrapper <- function() { height }
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
print.ggplot <- function(x) {
grid::grid.newpage()
build <- ggplot2::ggplot_build(x)
gtable <- ggplot2::ggplot_gtable(build)
grid::grid.draw(gtable)
structure(list(
build = build,
gtable = gtable
), class = "ggplot_build_gtable")
}
getDims <- function() {
width <- widthWrapper()
height <- heightWrapper()
# Note that these are reactive calls. A change to the width and height
# will inherently cause a reactive plot to redraw (unless width and
# height were explicitly specified).
if (width == 'auto')
width <- session$clientData[[paste0('output_', outputName, '_width')]]
if (height == 'auto')
height <- session$clientData[[paste0('output_', outputName, '_height')]]
list(width = width, height = height)
}
# Vars to store session and output, so that they can be accessed from
# the plotObj() reactive.
session <- NULL
outputName <- NULL
# This function is the one that's returned from renderPlot(), and gets
# wrapped in an observer when the output value is assigned. The expression
# passed to renderPlot() is actually run in plotObj(); this function can only
# replay a plot if the width/height changes.
renderFunc <- function(shinysession, name, ...) {
session <<- shinysession
outputName <<- name
dims <- getDims()
if (is.null(dims$width) || is.null(dims$height) ||
dims$width <= 0 || dims$height <= 0) {
return(NULL)
}
# The reactive that runs the expr in renderPlot()
plotData <- plotObj()
img <- plotData$img
# If only the width/height have changed, simply replay the plot and make a
# new img.
if (dims$width != img$width || dims$height != img$height) {
pixelratio <- session$clientData$pixelratio %OR% 1
coordmap <- NULL
plotFunc <- function() {
..stacktraceon..(grDevices::replayPlot(plotData$recordedPlot))
# Coordmap must be recalculated after replaying plot, because pixel
# dimensions will have changed.
if (inherits(plotData$plotResult, "ggplot_build_gtable")) {
coordmap <<- getGgplotCoordmap(plotData$plotResult, pixelratio, res)
} else {
coordmap <<- getPrevPlotCoordmap(dims$width, dims$height)
}
}
outfile <- ..stacktraceoff..(
plotPNG(plotFunc, width = dims$width*pixelratio, height = dims$height*pixelratio,
res = res*pixelratio)
)
on.exit(unlink(outfile))
img <- dropNulls(list(
src = session$fileUrl(name, outfile, contentType='image/png'),
width = dims$width,
height = dims$height,
coordmap = coordmap,
# Get coordmap error message if present
error = attr(coordmap, "error", exact = TRUE)
))
}
img
}
plotObj <- reactive(label = "plotObj", {
if (execOnResize) {
dims <- getDims()
} else {
isolate({ dims <- getDims() })
}
if (is.null(dims$width) || is.null(dims$height) ||
dims$width <= 0 || dims$height <= 0) {
return(NULL)
}
# Resolution multiplier
pixelratio <- session$clientData$pixelratio %OR% 1
plotResult <- NULL
recordedPlot <- NULL
coordmap <- NULL
plotFunc <- function() {
success <-FALSE
tryCatch(
{
# This is necessary to enable displaylist recording
grDevices::dev.control(displaylist = "enable")
# Actually perform the plotting
result <- withVisible(func())
success <- TRUE
},
finally = {
if (!success) {
# If there was an error in making the plot, there's a good chance
# it's "Error in plot.new: figure margins too large". We need to
# take a reactive dependency on the width and height, so that the
# user's plotting code will re-execute when the plot is resized,
# instead of just replaying the previous plot (which errored).
getDims()
}
}
)
if (result$visible) {
# Use capture.output to squelch printing to the actual console; we
# are only interested in plot output
utils::capture.output({
# This ..stacktraceon.. negates the ..stacktraceoff.. that wraps
# the call to plotFunc. The value needs to be printed just in case
# it's an object that requires printing to generate plot output,
# similar to ggplot2. But for base graphics, it would already have
# been rendered when func was called above, and the print should
# have no effect.
plotResult <<- ..stacktraceon..(print(result$value))
})
}
recordedPlot <<- grDevices::recordPlot()
if (inherits(plotResult, "ggplot_build_gtable")) {
coordmap <<- getGgplotCoordmap(plotResult, pixelratio, res)
} else {
coordmap <<- getPrevPlotCoordmap(dims$width, dims$height)
}
}
# This ..stacktraceoff.. is matched by the `func` function's
# wrapFunctionLabel(..stacktraceon=TRUE) call near the beginning of
# renderPlot, and by the ..stacktraceon.. in plotFunc where ggplot objects
# are printed
outfile <- ..stacktraceoff..(
do.call(plotPNG, c(plotFunc, width=dims$width*pixelratio,
height=dims$height*pixelratio, res=res*pixelratio, args))
)
on.exit(unlink(outfile))
list(
# img is the content that gets sent to the client.
img = dropNulls(list(
src = session$fileUrl(outputName, outfile, contentType='image/png'),
width = dims$width,
height = dims$height,
coordmap = coordmap,
# Get coordmap error message if present.
error = attr(coordmap, "error", exact = TRUE)
)),
# Returned value from expression in renderPlot() -- may be a printable
# object like ggplot2. Needed just in case we replayPlot and need to get
# a coordmap again.
plotResult = plotResult,
recordedPlot = recordedPlot
)
})
# If renderPlot isn't going to adapt to the height of the div, then the
# div needs to adapt to the height of renderPlot. By default, plotOutput
# sets the height to 400px, so to make it adapt we need to override it
# with NULL.
outputFunc <- plotOutput
if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL)
markRenderFunction(outputFunc, renderFunc, outputArgs = outputArgs)
}
# The coordmap extraction functions below return something like the examples
# below. For base graphics:
# plot(mtcars$wt, mtcars$mpg)
# str(getPrevPlotCoordmap(400, 300))
# List of 1
# $ :List of 4
# ..$ domain :List of 4
# .. ..$ left : num 1.36
# .. ..$ right : num 5.58
# .. ..$ bottom: num 9.46
# .. ..$ top : num 34.8
# ..$ range :List of 4
# .. ..$ left : num 50.4
# .. ..$ right : num 373
# .. ..$ bottom: num 199
# .. ..$ top : num 79.6
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ mapping: Named list()
#
# For ggplot2, it might be something like:
# p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
# str(getGgplotCoordmap(p, 1))
# List of 1
# $ :List of 10
# ..$ panel : int 1
# ..$ row : int 1
# ..$ col : int 1
# ..$ panel_vars: Named list()
# ..$ scale_x : int 1
# ..$ scale_y : int 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 2
# .. ..$ x: chr "wt"
# .. ..$ y: chr "mpg"
# ..$ range :List of 4
# .. ..$ left : num 40.8
# .. ..$ right : num 446
# .. ..$ bottom: num 263
# .. ..$ top : num 14.4
#
# With a faceted ggplot2 plot, the outer list contains two objects, each of
# which represents one panel. In this example, there is one panelvar, but there
# can be up to two of them.
# mtc <- mtcars
# mtc$am <- factor(mtc$am)
# p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() + facet_wrap(~ am)
# str(getGgplotCoordmap(p, 1))
# List of 2
# $ :List of 10
# ..$ panel : int 1
# ..$ row : int 1
# ..$ col : int 1
# ..$ panel_vars:List of 1
# .. ..$ panelvar1: Factor w/ 2 levels "0","1": 1
# ..$ scale_x : int 1
# ..$ scale_y : int 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 3
# .. ..$ x : chr "wt"
# .. ..$ y : chr "mpg"
# .. ..$ panelvar1: chr "am"
# ..$ range :List of 4
# .. ..$ left : num 45.6
# .. ..$ right : num 317
# .. ..$ bottom: num 251
# .. ..$ top : num 35.7
# $ :List of 10
# ..$ panel : int 2
# ..$ row : int 1
# ..$ col : int 2
# ..$ panel_vars:List of 1
# .. ..$ panelvar1: Factor w/ 2 levels "0","1": 2
# ..$ scale_x : int 1
# ..$ scale_y : int 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 3
# .. ..$ x : chr "wt"
# .. ..$ y : chr "mpg"
# .. ..$ panelvar1: chr "am"
# ..$ range :List of 4
# .. ..$ left : num 322
# .. ..$ right : num 594
# .. ..$ bottom: num 251
# .. ..$ top : num 35.7
# Get a coordmap for the previous plot made with base graphics.
# Requires width and height of output image, in pixels.
# Must be called before the graphics device is closed.
getPrevPlotCoordmap <- function(width, height) {
usrCoords <- graphics::par('usr')
usrBounds <- usrCoords
if (graphics::par('xlog')) {
usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)]
}
if (graphics::par('ylog')) {
usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)]
}
# Wrapped in double list because other types of plots can have multiple panels.
list(list(
# Bounds of the plot area, in data space
domain = list(
left = usrCoords[1],
right = usrCoords[2],
bottom = usrCoords[3],
top = usrCoords[4]
),
# The bounds of the plot area, in DOM pixels
range = list(
left = graphics::grconvertX(usrBounds[1], 'user', 'nfc') * width,
right = graphics::grconvertX(usrBounds[2], 'user', 'nfc') * width,
bottom = (1-graphics::grconvertY(usrBounds[3], 'user', 'nfc')) * height - 1,
top = (1-graphics::grconvertY(usrBounds[4], 'user', 'nfc')) * height - 1
),
log = list(
x = if (graphics::par('xlog')) 10 else NULL,
y = if (graphics::par('ylog')) 10 else NULL
),
# We can't extract the original variable names from a base graphic.
# `mapping` is an empty _named_ list, so that it is converted to an object
# (not an array) in JSON.
mapping = list(x = NULL)[0]
))
}
# Given a ggplot_build_gtable object, return a coordmap for it.
getGgplotCoordmap <- function(p, pixelratio, res) {
# Structure of ggplot objects changed after 2.1.0
new_ggplot <- (utils::packageVersion("ggplot2") > "2.1.0")
if (!inherits(p, "ggplot_build_gtable"))
return(NULL)
# Given a built ggplot object, return x and y domains (data space coords) for
# each panel.
find_panel_info <- function(b) {
if (new_ggplot) {
layout <- b$layout$panel_layout
} else {
layout <- b$panel$layout
}
# Convert factor to numbers
layout$PANEL <- as.integer(as.character(layout$PANEL))
# Names of facets
facet_vars <- NULL
if (new_ggplot) {
facet <- b$layout$facet
if (inherits(facet, "FacetGrid")) {
facet_vars <- vapply(c(facet$params$cols, facet$params$rows), as.character, character(1))
} else if (inherits(facet, "FacetWrap")) {
facet_vars <- vapply(facet$params$facets, as.character, character(1))
}
} else {
facet <- b$plot$facet
if (inherits(facet, "grid")) {
facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1))
} else if (inherits(facet, "wrap")) {
facet_vars <- vapply(facet$facets, as.character, character(1))
}
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row
l <- layout[i, ]
scale_x <- l$SCALE_X
scale_y <- l$SCALE_Y
mapping <- find_plot_mappings(b)
# For each of the faceting variables, get the value of that variable in
# the current panel. Default to empty _named_ list so that it's sent as a
# JSON object, not array.
panel_vars <- list(a = NULL)[0]
for (i in seq_along(facet_vars)) {
var_name <- facet_vars[[i]]
vname <- paste0("panelvar", i)
mapping[[vname]] <- var_name
panel_vars[[vname]] <- l[[var_name]]
}
list(
panel = l$PANEL,
row = l$ROW,
col = l$COL,
panel_vars = panel_vars,
scale_x = scale_x,
scale_y = scale_x,
log = check_log_scales(b, scale_x, scale_y),
domain = find_panel_domain(b, l$PANEL, scale_x, scale_y),
mapping = mapping
)
})
}
# Given a single range object (representing the data domain) from a built
# ggplot object, return the domain.
find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) {
if (new_ggplot) {
range <- b$layout$panel_ranges[[panel_num]]
} else {
range <- b$panel$ranges[[panel_num]]
}
domain <- list(
left = range$x.range[1],
right = range$x.range[2],
bottom = range$y.range[1],
top = range$y.range[2]
)
# Check for reversed scales
if (new_ggplot) {
xscale <- b$layout$panel_scales$x[[scalex_num]]
yscale <- b$layout$panel_scales$y[[scaley_num]]
} else {
xscale <- b$panel$x_scales[[scalex_num]]
yscale <- b$panel$y_scales[[scaley_num]]
}
if (!is.null(xscale$trans) && xscale$trans$name == "reverse") {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (!is.null(yscale$trans) && yscale$trans$name == "reverse") {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain
}
# Given built ggplot object, return object with the log base for x and y if
# there are log scales or coord transforms.
check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) {
# Given a vector of transformation names like c("log-10", "identity"),
# return the first log base, like 10. If none are present, return NULL.
extract_log_base <- function(names) {
names <- names[grepl("^log-", names)]
if (length(names) == 0)
return(NULL)
names <- names[1]
as.numeric(sub("^log-", "", names))
}
# Look for log scales and log coord transforms. People shouldn't use both.
x_names <- character(0)
y_names <- character(0)
# Continuous scales have a trans; discrete ones don't
if (new_ggplot) {
if (!is.null(b$layout$panel_scales$x[[scalex_num]]$trans))
x_names <- b$layout$panel_scales$x[[scalex_num]]$trans$name
if (!is.null(b$layout$panel_scales$y[[scaley_num]]$trans))
y_names <- b$layout$panel_scales$y[[scaley_num]]$trans$name
} else {
if (!is.null(b$panel$x_scales[[scalex_num]]$trans))
x_names <- b$panel$x_scales[[scalex_num]]$trans$name
if (!is.null(b$panel$y_scales[[scaley_num]]$trans))
y_names <- b$panel$y_scales[[scaley_num]]$trans$name
}
coords <- b$plot$coordinates
if (!is.null(coords$trans)) {
if (!is.null(coords$trans$x))
x_names <- c(x_names, coords$trans$x$name)
if (!is.null(coords$trans$y))
y_names <- c(y_names, coords$trans$y$name)
}
# Keep only scale/trans names that start with "log-"
x_names <- x_names[grepl("^log-", x_names)]
y_names <- y_names[grepl("^log-", y_names)]
# Extract the log base from the trans name -- a string like "log-10".
list(
x = extract_log_base(x_names),
y = extract_log_base(y_names)
)
}
# Given a built ggplot object, return a named list of variables mapped to x
# and y. This function will be called for each panel, but in practice the
# result is always the same across panels, so we'll cache the result.
mappings_cache <- NULL
find_plot_mappings <- function(b) {
if (!is.null(mappings_cache))
return(mappings_cache)
# lapply'ing as.character results in unexpected behavior for expressions
# like `wt/2`. This works better.
mappings <- as.list(as.character(b$plot$mapping))
# If x or y mapping is missing, look in each layer for mappings and return
# the first one.
missing_mappings <- setdiff(c("x", "y"), names(mappings))
if (length(missing_mappings) != 0) {
# Grab mappings for each layer
layer_mappings <- lapply(b$plot$layers, function(layer) {
lapply(layer$mapping, as.character)
})
# Get just the first x or y value in the combined list of plot and layer
# mappings.
mappings <- c(list(mappings), layer_mappings)
mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL),
function(init, m) {
if (is.null(init$x) && !is.null(m$x)) init$x <- m$x
if (is.null(init$y) && !is.null(m$y)) init$y <- m$y
init
}
)
}
# Look for CoordFlip
if (inherits(b$plot$coordinates, "CoordFlip")) {
mappings[c("x", "y")] <- mappings[c("y", "x")]
}
mappings_cache <<- mappings
mappings
}
# Given a gtable object, return the x and y ranges (in pixel dimensions)
find_panel_ranges <- function(g, pixelratio) {
# Given a vector of unit objects, return logical vector indicating which ones
# are "null" units. These units use the remaining available width/height --
# that is, the space not occupied by elements that have an absolute size.
is_null_unit <- function(x) {
# A vector of units can be either a list of individual units (a unit.list
# object), each with their own set of attributes, or an atomic vector with
# one set of attributes. ggplot2 switched from the former (in version
# 1.0.1) to the latter. We need to make sure that we get the correct
# result in both cases.
if (inherits(x, "unit.list")) {
# For ggplot2 <= 1.0.1
vapply(x, FUN.VALUE = logical(1), function(u) {
isTRUE(attr(u, "unit", exact = TRUE) == "null")
})
} else {
# For later versions of ggplot2
attr(x, "unit", exact = TRUE) == "null"
}
}
# Workaround for a bug in the quartz device. If you have a 400x400 image and
# run `convertWidth(unit(1, "npc"), "native")`, the result will depend on
# res setting of the device. If res=72, then it returns 400 (as expected),
# but if, e.g., res=96, it will return 300, which is incorrect.
devScaleFactor <- 1
if (grepl("quartz", names(grDevices::dev.cur()), fixed = TRUE)) {
devScaleFactor <- res / 72
}
# Convert a unit (or vector of units) to a numeric vector of pixel sizes
h_px <- function(x) {
devScaleFactor * grid::convertHeight(x, "native", valueOnly = TRUE)
}
w_px <- function(x) {
devScaleFactor * grid::convertWidth(x, "native", valueOnly = TRUE)
}
# Given a vector of relative sizes (in grid units), and a function for
# converting grid units to numeric pixels, return a numeric vector of
# pixel sizes.
find_px_sizes <- function(rel_sizes, unit_to_px) {
# Total pixels (in height or width)
total_px <- unit_to_px(grid::unit(1, "npc"))
# Calculate size of all panel(s) together. Panels (and only panels) have
# null size.
null_idx <- is_null_unit(rel_sizes)
# All the absolute heights. At this point, null heights are 0. We need to
# calculate them separately and add them in later.
px_sizes <- unit_to_px(rel_sizes)
# Total size for panels is image size minus absolute (non-panel) elements
panel_px_total <- total_px - sum(px_sizes)
# Divide up the total panel size up into the panels (scaled by size)
panel_sizes_rel <- as.numeric(rel_sizes[null_idx])
panel_sizes_rel <- panel_sizes_rel / sum(panel_sizes_rel)
px_sizes[null_idx] <- panel_px_total * panel_sizes_rel
abs(px_sizes)
}
px_heights <- find_px_sizes(g$heights, h_px)
px_widths <- find_px_sizes(g$widths, w_px)
# Convert to absolute pixel positions
x_pos <- cumsum(px_widths)
y_pos <- cumsum(px_heights)
# Match up the pixel dimensions to panels
layout <- g$layout
# For panels:
# * For facet_wrap, they'll be named "panel-1", "panel-2", etc.
# * For no facet or facet_grid, they'll just be named "panel". For
# facet_grid, we need to re-order the layout table. Assume that panel
# numbers go from left to right, then next row.
# Assign a number to each panel, corresponding to PANEl in the built ggplot
# object.
layout <- layout[grepl("^panel", layout$name), ]
layout <- layout[order(layout$t, layout$l), ]
layout$panel <- seq_len(nrow(layout))
# When using a HiDPI client on a Linux server, the pixel
# dimensions are doubled, so we have to divide the dimensions by
# `pixelratio`. When a HiDPI client is used on a Mac server (with
# the quartz device), the pixel dimensions _aren't_ doubled, even though
# the image has double size. In the latter case we don't have to scale the
# numbers down.
pix_ratio <- 1
if (!grepl("^quartz", names(grDevices::dev.cur()))) {
pix_ratio <- pixelratio
}
# Return list of lists, where each inner list has left, right, top, bottom
# values for a panel
lapply(seq_len(nrow(layout)), function(i) {
p <- layout[i, , drop = FALSE]
list(
left = x_pos[p$l - 1] / pix_ratio,
right = x_pos[p$r] / pix_ratio,
bottom = y_pos[p$b] / pix_ratio,
top = y_pos[p$t - 1] / pix_ratio
)
})
}
tryCatch({
# Get info from built ggplot object
info <- find_panel_info(p$build)
# Get ranges from gtable - it's possible for this to return more elements than
# info, because it calculates positions even for panels that aren't present.
# This can happen with facet_wrap.
ranges <- find_panel_ranges(p$gtable, pixelratio)
for (i in seq_along(info)) {
info[[i]]$range <- ranges[[i]]
}
return(info)
}, error = function(e) {
# If there was an error extracting info from the ggplot object, just return
# a list with the error message.
return(structure(list(), error = e$message))
})
}
|