1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/render-cached-plot.R
\name{renderCachedPlot}
\alias{renderCachedPlot}
\title{Plot output with cached images}
\usage{
renderCachedPlot(
expr,
cacheKeyExpr,
sizePolicy = sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2),
res = 72,
cache = "app",
...,
alt = "Plot object",
outputArgs = list(),
width = NULL,
height = NULL
)
}
\arguments{
\item{expr}{An expression that generates a plot.}
\item{cacheKeyExpr}{An expression that returns a cache key. This key should
be a unique identifier for a plot: the assumption is that if the cache key
is the same, then the plot will be the same.}
\item{sizePolicy}{A function that takes two arguments, \code{width} and
\code{height}, and returns a list with \code{width} and \code{height}. The
purpose is to round the actual pixel dimensions from the browser to some
other dimensions, so that this will not generate and cache images of every
possible pixel dimension. See \code{\link[=sizeGrowthRatio]{sizeGrowthRatio()}} for more
information on the default sizing policy.}
\item{res}{The resolution of the PNG, in pixels per inch.}
\item{cache}{The scope of the cache, or a cache object. This can be \code{"app"}
(the default), \code{"session"}, or a cache object like a
\code{\link[cachem:cache_disk]{cachem::cache_disk()}}. See the Cache Scoping section for more information.}
\item{...}{Arguments to be passed through to \code{\link[=plotPNG]{plotPNG()}}.
These can be used to set the width, height, background color, etc.}
\item{alt}{Alternate text for the HTML \verb{<img>} tag if it cannot be displayed
or viewed (i.e., the user uses a screen reader). In addition to a character
string, the value may be a reactive expression (or a function referencing
reactive values) that returns a character string. If the value is \code{NA} (the
default), then \code{ggplot2::get_alt_text()} is used to extract alt text from
ggplot objects; for other plots, \code{NA} results in alt text of "Plot object".
\code{NULL} or \code{""} is not recommended because those should be limited to
decorative images.}
\item{outputArgs}{A list of arguments to be passed through to the implicit
call to \code{\link[=plotOutput]{plotOutput()}} when \code{renderPlot} is used in an
interactive R Markdown document.}
\item{width, height}{not used. They are specified via the argument
\code{sizePolicy}.}
}
\description{
Renders a reactive plot, with plot images cached to disk. As of Shiny 1.6.0,
this is a shortcut for using \code{\link[=bindCache]{bindCache()}} with \code{\link[=renderPlot]{renderPlot()}}.
}
\details{
\code{expr} is an expression that generates a plot, similar to that in
\code{renderPlot}. Unlike with \code{renderPlot}, this expression does not
take reactive dependencies. It is re-executed only when the cache key
changes.
\code{cacheKeyExpr} is an expression which, when evaluated, returns an object
which will be serialized and hashed using the \code{\link[rlang:hash]{rlang::hash()}}
function to generate a string that will be used as a cache key. This key is
used to identify the contents of the plot: if the cache key is the same as a
previous time, it assumes that the plot is the same and can be retrieved from
the cache.
This \code{cacheKeyExpr} is reactive, and so it will be re-evaluated when any
upstream reactives are invalidated. This will also trigger re-execution of
the plotting expression, \code{expr}.
The key should consist of "normal" R objects, like vectors and lists. Lists
should in turn contain other normal R objects. If the key contains
environments, external pointers, or reference objects --- or even if it has
such objects attached as attributes --- then it is possible that it will
change unpredictably even when you do not expect it to. Additionally, because
the entire key is serialized and hashed, if it contains a very large object
--- a large data set, for example --- there may be a noticeable performance
penalty.
If you face these issues with the cache key, you can work around them by
extracting out the important parts of the objects, and/or by converting them
to normal R objects before returning them. Your expression could even
serialize and hash that information in an efficient way and return a string,
which will in turn be hashed (very quickly) by the
\code{\link[rlang:hash]{rlang::hash()}} function.
Internally, the result from \code{cacheKeyExpr} is combined with the name of
the output (if you assign it to \code{output$plot1}, it will be combined
with \code{"plot1"}) to form the actual key that is used. As a result, even
if there are multiple plots that have the same \code{cacheKeyExpr}, they
will not have cache key collisions.
}
\section{Interactive plots}{
\code{renderCachedPlot} can be used to create interactive plots. See
\code{\link[=plotOutput]{plotOutput()}} for more information and examples.
}
\examples{
## Only run examples in interactive R sessions
if (interactive()) {
# A basic example that uses the default app-scoped memory cache.
# The cache will be shared among all simultaneous users of the application.
shinyApp(
fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput("n", "Number of points", 4, 32, value = 8, step = 4)
),
mainPanel(plotOutput("plot"))
)
),
function(input, output, session) {
output$plot <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
seqn <- seq_len(input$n)
plot(mtcars$wt[seqn], mtcars$mpg[seqn],
xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
},
cacheKeyExpr = { list(input$n) }
)
}
)
# An example uses a data object shared across sessions. mydata() is part of
# the cache key, so when its value changes, plots that were previously
# stored in the cache will no longer be used (unless mydata() changes back
# to its previous value).
mydata <- reactiveVal(data.frame(x = rnorm(400), y = rnorm(400)))
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput("n", "Number of points", 50, 400, 100, step = 50),
actionButton("newdata", "New data")
),
mainPanel(
plotOutput("plot")
)
)
)
server <- function(input, output, session) {
observeEvent(input$newdata, {
mydata(data.frame(x = rnorm(400), y = rnorm(400)))
})
output$plot <- renderCachedPlot(
{
Sys.sleep(2)
d <- mydata()
seqn <- seq_len(input$n)
plot(d$x[seqn], d$y[seqn], xlim = range(d$x), ylim = range(d$y))
},
cacheKeyExpr = { list(input$n, mydata()) },
)
}
shinyApp(ui, server)
# A basic application with two plots, where each plot in each session has
# a separate cache.
shinyApp(
fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput("n", "Number of points", 4, 32, value = 8, step = 4)
),
mainPanel(
plotOutput("plot1"),
plotOutput("plot2")
)
)
),
function(input, output, session) {
output$plot1 <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
seqn <- seq_len(input$n)
plot(mtcars$wt[seqn], mtcars$mpg[seqn],
xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
},
cacheKeyExpr = { list(input$n) },
cache = cachem::cache_mem()
)
output$plot2 <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
seqn <- seq_len(input$n)
plot(mtcars$wt[seqn], mtcars$mpg[seqn],
xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
},
cacheKeyExpr = { list(input$n) },
cache = cachem::cache_mem()
)
}
)
}
\dontrun{
# At the top of app.R, this set the application-scoped cache to be a memory
# cache that is 20 MB in size, and where cached objects expire after one
# hour.
shinyOptions(cache = cachem::cache_mem(max_size = 20e6, max_age = 3600))
# At the top of app.R, this set the application-scoped cache to be a disk
# cache that can be shared among multiple concurrent R processes, and is
# deleted when the system reboots.
shinyOptions(cache = cachem::cache_disk(file.path(dirname(tempdir()), "myapp-cache")))
# At the top of app.R, this set the application-scoped cache to be a disk
# cache that can be shared among multiple concurrent R processes, and
# persists on disk across reboots.
shinyOptions(cache = cachem::cache_disk("./myapp-cache"))
# At the top of the server function, this set the session-scoped cache to be
# a memory cache that is 5 MB in size.
server <- function(input, output, session) {
shinyOptions(cache = cachem::cache_mem(max_size = 5e6))
output$plot <- renderCachedPlot(
...,
cache = "session"
)
}
}
}
\seealso{
See \code{\link[=renderPlot]{renderPlot()}} for the regular, non-cached version of this
function. It can be used with \code{\link[=bindCache]{bindCache()}} to get the same effect as
\code{renderCachedPlot()}. For more about configuring caches, see
\code{\link[cachem:cache_mem]{cachem::cache_mem()}} and \code{\link[cachem:cache_disk]{cachem::cache_disk()}}.
}
|