1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
#' Plot output with cached images
#'
#' Renders a reactive plot, with plot images cached to disk.
#'
#' \code{expr} is an expression that generates a plot, similar to that in
#' \code{renderPlot}. Unlike with \code{renderPlot}, this expression does not
#' take reactive dependencies. It is re-executed only when the cache key
#' changes.
#'
#' \code{cacheKeyExpr} is an expression which, when evaluated, returns an object
#' which will be serialized and hashed using the \code{\link[digest]{digest}}
#' function to generate a string that will be used as a cache key. This key is
#' used to identify the contents of the plot: if the cache key is the same as a
#' previous time, it assumes that the plot is the same and can be retrieved from
#' the cache.
#'
#' This \code{cacheKeyExpr} is reactive, and so it will be re-evaluated when any
#' upstream reactives are invalidated. This will also trigger re-execution of
#' the plotting expression, \code{expr}.
#'
#' The key should consist of "normal" R objects, like vectors and lists. Lists
#' should in turn contain other normal R objects. If the key contains
#' environments, external pointers, or reference objects -- or even if it has
#' such objects attached as attributes -- then it is possible that it will
#' change unpredictably even when you do not expect it to. Additionally, because
#' the entire key is serialized and hashed, if it contains a very large object
#' -- a large data set, for example -- there may be a noticeable performance
#' penalty.
#'
#' If you face these issues with the cache key, you can work around them by
#' extracting out the important parts of the objects, and/or by converting them
#' to normal R objects before returning them. Your expression could even
#' serialize and hash that information in an efficient way and return a string,
#' which will in turn be hashed (very quickly) by the
#' \code{\link[digest]{digest}} function.
#'
#' Internally, the result from \code{cacheKeyExpr} is combined with the name of
#' the output (if you assign it to \code{output$plot1}, it will be combined
#' with \code{"plot1"}) to form the actual key that is used. As a result, even
#' if there are multiple plots that have the same \code{cacheKeyExpr}, they
#' will not have cache key collisions.
#'
#' @section Cache scoping:
#'
#' There are a number of different ways you may want to scope the cache. For
#' example, you may want each user session to have their own plot cache, or
#' you may want each run of the application to have a cache (shared among
#' possibly multiple simultaneous user sessions), or you may want to have a
#' cache that persists even after the application is shut down and started
#' again.
#'
#' To control the scope of the cache, use the \code{cache} parameter. There
#' are two ways of having Shiny automatically create and clean up the disk
#' cache.
#'
#' \describe{
#' \item{1}{To scope the cache to one run of a Shiny application (shared
#' among possibly multiple user sessions), use \code{cache="app"}. This
#' is the default. The cache will be shared across multiple sessions, so
#' there is potentially a large performance benefit if there are many users
#' of the application. When the application stops running, the cache will
#' be deleted. If plots cannot be safely shared across users, this should
#' not be used.}
#' \item{2}{To scope the cache to one session, use \code{cache="session"}.
#' When a new user session starts -- in other words, when a web browser
#' visits the Shiny application -- a new cache will be created on disk
#' for that session. When the session ends, the cache will be deleted.
#' The cache will not be shared across multiple sessions.}
#' }
#'
#' If either \code{"app"} or \code{"session"} is used, the cache will be 10 MB
#' in size, and will be stored stored in memory, using a
#' \code{\link{memoryCache}} object. Note that the cache space will be shared
#' among all cached plots within a single application or session.
#'
#' In some cases, you may want more control over the caching behavior. For
#' example, you may want to use a larger or smaller cache, share a cache
#' among multiple R processes, or you may want the cache to persist across
#' multiple runs of an application, or even across multiple R processes.
#'
#' To use different settings for an application-scoped cache, you can call
#' \code{\link{shinyOptions}()} at the top of your app.R, server.R, or
#' global.R. For example, this will create a cache with 20 MB of space
#' instead of the default 10 MB:
#' \preformatted{
#' shinyOptions(cache = memoryCache(size = 20e6))
#' }
#'
#' To use different settings for a session-scoped cache, you can call
#' \code{\link{shinyOptions}()} at the top of your server function. To use
#' the session-scoped cache, you must also call \code{renderCachedPlot} with
#' \code{cache="session"}. This will create a 20 MB cache for the session:
#' \preformatted{
#' function(input, output, session) {
#' shinyOptions(cache = memoryCache(size = 20e6))
#'
#' output$plot <- renderCachedPlot(
#' ...,
#' cache = "session"
#' )
#' }
#' }
#'
#' If you want to create a cache that is shared across multiple concurrent
#' R processes, you can use a \code{\link{diskCache}}. You can create an
#' application-level shared cache by putting this at the top of your app.R,
#' server.R, or global.R:
#' \preformatted{
#' shinyOptions(cache = diskCache(file.path(dirname(tempdir()), "myapp-cache"))
#' }
#'
#' This will create a subdirectory in your system temp directory named
#' \code{myapp-cache} (replace \code{myapp-cache} with a unique name of
#' your choosing). On most platforms, this directory will be removed when
#' your system reboots. This cache will persist across multiple starts and
#' stops of the R process, as long as you do not reboot.
#'
#' To have the cache persist even across multiple reboots, you can create the
#' cache in a location outside of the temp directory. For example, it could
#' be a subdirectory of the application:
#' \preformatted{
#' shinyOptions(cache = diskCache("./myapp-cache"))
#' }
#'
#' In this case, resetting the cache will have to be done manually, by deleting
#' the directory.
#'
#' You can also scope a cache to just one plot, or selected plots. To do that,
#' create a \code{\link{memoryCache}} or \code{\link{diskCache}}, and pass it
#' as the \code{cache} argument of \code{renderCachedPlot}.
#'
#' @section Interactive plots:
#'
#' \code{renderCachedPlot} can be used to create interactive plots. See
#' \code{\link{plotOutput}} for more information and examples.
#'
#'
#' @inheritParams renderPlot
#' @param cacheKeyExpr An expression that returns a cache key. This key should
#' be a unique identifier for a plot: the assumption is that if the cache key
#' is the same, then the plot will be the same.
#' @param sizePolicy A function that takes two arguments, \code{width} and
#' \code{height}, and returns a list with \code{width} and \code{height}. The
#' purpose is to round the actual pixel dimensions from the browser to some
#' other dimensions, so that this will not generate and cache images of every
#' possible pixel dimension. See \code{\link{sizeGrowthRatio}} for more
#' information on the default sizing policy.
#' @param res The resolution of the PNG, in pixels per inch.
#' @param cache The scope of the cache, or a cache object. This can be
#' \code{"app"} (the default), \code{"session"}, or a cache object like
#' a \code{\link{diskCache}}. See the Cache Scoping section for more
#' information.
#'
#' @seealso See \code{\link{renderPlot}} for the regular, non-cached version of
#' this function. For more about configuring caches, see
#' \code{\link{memoryCache}} and \code{\link{diskCache}}.
#'
#'
#' @examples
#' ## Only run examples in interactive R sessions
#' if (interactive()) {
#'
#' # A basic example that uses the default app-scoped memory cache.
#' # The cache will be shared among all simultaneous users of the application.
#' shinyApp(
#' fluidPage(
#' sidebarLayout(
#' sidebarPanel(
#' sliderInput("n", "Number of points", 4, 32, value = 8, step = 4)
#' ),
#' mainPanel(plotOutput("plot"))
#' )
#' ),
#' function(input, output, session) {
#' output$plot <- renderCachedPlot({
#' Sys.sleep(2) # Add an artificial delay
#' seqn <- seq_len(input$n)
#' plot(mtcars$wt[seqn], mtcars$mpg[seqn],
#' xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
#' },
#' cacheKeyExpr = { list(input$n) }
#' )
#' }
#' )
#'
#'
#'
#' # An example uses a data object shared across sessions. mydata() is part of
#' # the cache key, so when its value changes, plots that were previously
#' # stored in the cache will no longer be used (unless mydata() changes back
#' # to its previous value).
#' mydata <- reactiveVal(data.frame(x = rnorm(400), y = rnorm(400)))
#'
#' ui <- fluidPage(
#' sidebarLayout(
#' sidebarPanel(
#' sliderInput("n", "Number of points", 50, 400, 100, step = 50),
#' actionButton("newdata", "New data")
#' ),
#' mainPanel(
#' plotOutput("plot")
#' )
#' )
#' )
#'
#' server <- function(input, output, session) {
#' observeEvent(input$newdata, {
#' mydata(data.frame(x = rnorm(400), y = rnorm(400)))
#' })
#'
#' output$plot <- renderCachedPlot(
#' {
#' Sys.sleep(2)
#' d <- mydata()
#' seqn <- seq_len(input$n)
#' plot(d$x[seqn], d$y[seqn], xlim = range(d$x), ylim = range(d$y))
#' },
#' cacheKeyExpr = { list(input$n, mydata()) },
#' )
#' }
#'
#' shinyApp(ui, server)
#'
#'
#' # A basic application with two plots, where each plot in each session has
#' # a separate cache.
#' shinyApp(
#' fluidPage(
#' sidebarLayout(
#' sidebarPanel(
#' sliderInput("n", "Number of points", 4, 32, value = 8, step = 4)
#' ),
#' mainPanel(
#' plotOutput("plot1"),
#' plotOutput("plot2")
#' )
#' )
#' ),
#' function(input, output, session) {
#' output$plot1 <- renderCachedPlot({
#' Sys.sleep(2) # Add an artificial delay
#' seqn <- seq_len(input$n)
#' plot(mtcars$wt[seqn], mtcars$mpg[seqn],
#' xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
#' },
#' cacheKeyExpr = { list(input$n) },
#' cache = memoryCache()
#' )
#' output$plot2 <- renderCachedPlot({
#' Sys.sleep(2) # Add an artificial delay
#' seqn <- seq_len(input$n)
#' plot(mtcars$wt[seqn], mtcars$mpg[seqn],
#' xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
#' },
#' cacheKeyExpr = { list(input$n) },
#' cache = memoryCache()
#' )
#' }
#' )
#'
#' }
#'
#' \dontrun{
#' # At the top of app.R, this set the application-scoped cache to be a memory
#' # cache that is 20 MB in size, and where cached objects expire after one
#' # hour.
#' shinyOptions(cache = memoryCache(max_size = 20e6, max_age = 3600))
#'
#' # At the top of app.R, this set the application-scoped cache to be a disk
#' # cache that can be shared among multiple concurrent R processes, and is
#' # deleted when the system reboots.
#' shinyOptions(cache = diskCache(file.path(dirname(tempdir()), "myapp-cache"))
#'
#' # At the top of app.R, this set the application-scoped cache to be a disk
#' # cache that can be shared among multiple concurrent R processes, and
#' # persists on disk across reboots.
#' shinyOptions(cache = diskCache("./myapp-cache"))
#'
#' # At the top of the server function, this set the session-scoped cache to be
#' # a memory cache that is 5 MB in size.
#' server <- function(input, output, session) {
#' shinyOptions(cache = memoryCache(max_size = 5e6))
#'
#' output$plot <- renderCachedPlot(
#' ...,
#' cache = "session"
#' )
#' }
#'
#' }
#' @export
renderCachedPlot <- function(expr,
cacheKeyExpr,
sizePolicy = sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2),
res = 72,
cache = "app",
...,
outputArgs = list()
) {
# This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
# is called
installExprFunction(expr, "func", parent.frame(), quoted = FALSE, ..stacktraceon = TRUE)
# This is so that the expr doesn't re-execute by itself; it needs to be
# triggered by the cache key (or width/height) changing.
isolatedFunc <- function() isolate(func())
args <- list(...)
cacheKeyExpr <- substitute(cacheKeyExpr)
# The real cache key we'll use also includes width, height, res, pixelratio.
# This is just the part supplied by the user.
userCacheKey <- reactive(cacheKeyExpr, env = parent.frame(), quoted = TRUE, label = "userCacheKey")
ensureCacheSetup <- function() {
# For our purposes, cache objects must support these methods.
isCacheObject <- function(x) {
# Use tryCatch in case the object does not support `$`.
tryCatch(
is.function(x$get) && is.function(x$set),
error = function(e) FALSE
)
}
if (isCacheObject(cache)) {
# If `cache` is already a cache object, do nothing
return()
} else if (identical(cache, "app")) {
cache <<- getShinyOption("cache")
} else if (identical(cache, "session")) {
cache <<- session$cache
} else {
stop('`cache` must either be "app", "session", or a cache object with methods, `$get`, and `$set`.')
}
}
# The width and height of the plot to draw, given from sizePolicy. These
# values get filled by an observer below.
fitDims <- reactiveValues(width = NULL, height = NULL)
resizeObserver <- NULL
ensureResizeObserver <- function() {
if (!is.null(resizeObserver))
return()
# Given the actual width/height of the image in the browser, this gets the
# width/height from sizePolicy() and pushes those values into `fitDims`.
# It's done this way so that the `fitDims` only change (and cause
# invalidations) when the rendered image size changes, and not every time
# the browser's <img> tag changes size.
doResizeCheck <- function() {
width <- session$clientData[[paste0('output_', outputName, '_width')]]
height <- session$clientData[[paste0('output_', outputName, '_height')]]
if (is.null(width)) width <- 0
if (is.null(height)) height <- 0
rect <- sizePolicy(c(width, height))
fitDims$width <- rect[1]
fitDims$height <- rect[2]
}
# Run it once immediately, then set up the observer
isolate(doResizeCheck())
resizeObserver <<- observe(doResizeCheck())
}
# Vars to store session and output, so that they can be accessed from
# the plotObj() reactive.
session <- NULL
outputName <- NULL
drawReactive <- reactive(label = "plotObj", {
hybrid_chain(
# Depend on the user cache key, even though we don't use the value. When
# it changes, it can cause the drawReactive to re-execute. (Though
# drawReactive will not necessarily re-execute -- it must be called from
# renderFunc, which happens only if there's a cache miss.)
userCacheKey(),
function(userCacheKeyValue) {
# Get width/height, but don't depend on them.
isolate({
width <- fitDims$width
height <- fitDims$height
})
pixelratio <- session$clientData$pixelratio %OR% 1
do.call("drawPlot", c(
list(
name = outputName,
session = session,
func = isolatedFunc,
width = width,
height = height,
pixelratio = pixelratio,
res = res
),
args
))
},
catch = function(reason) {
# Non-isolating read. A common reason for errors in plotting is because
# the dimensions are too small. By taking a dependency on width/height,
# we can try again if the plot output element changes size.
fitDims$width
fitDims$height
# Propagate the error
stop(reason)
}
)
})
# This function is the one that's returned from renderPlot(), and gets
# wrapped in an observer when the output value is assigned.
renderFunc <- function(shinysession, name, ...) {
outputName <<- name
session <<- shinysession
ensureCacheSetup()
ensureResizeObserver()
hybrid_chain(
# This use of the userCacheKey() sets up the reactive dependency that
# causes plot re-draw events. These may involve pulling from the cache,
# replaying a display list, or re-executing user code.
userCacheKey(),
function(userCacheKeyResult) {
width <- fitDims$width
height <- fitDims$height
pixelratio <- session$clientData$pixelratio %OR% 1
key <- digest::digest(list(outputName, userCacheKeyResult, width, height, res, pixelratio), "xxhash64")
plotObj <- cache$get(key)
# First look in cache.
# Case 1. cache hit.
if (!is.key_missing(plotObj)) {
return(list(
cacheHit = TRUE,
key = key,
plotObj = plotObj,
width = width,
height = height,
pixelratio = pixelratio
))
}
# If not in cache, hybrid_chain call to drawReactive
#
# Two more possible cases:
# 2. drawReactive will re-execute and return a plot that's the
# correct size.
# 3. It will not re-execute, but it will return the previous value,
# which is the wrong size. It will include a valid display list
# which can be used by resizeSavedPlot.
hybrid_chain(
drawReactive(),
function(drawReactiveResult) {
# Pass along the key for caching in the next stage
list(
cacheHit = FALSE,
key = key,
plotObj = drawReactiveResult,
width = width,
height = height,
pixelratio = pixelratio
)
}
)
},
function(result) {
width <- result$width
height <- result$height
pixelratio <- result$pixelratio
# Three possibilities when we get here:
# 1. There was a cache hit. No need to set a value in the cache.
# 2. There was a cache miss, and the plotObj is already the correct
# size (because drawReactive re-executed). In this case, we need
# to cache it.
# 3. There was a cache miss, and the plotObj was not the corect size.
# In this case, we need to replay the display list, and then cache
# the result.
if (!result$cacheHit) {
# If the image is already the correct size, this just returns the
# object unchanged.
result$plotObj <- do.call("resizeSavedPlot", c(
list(
name,
shinysession,
result$plotObj,
width,
height,
pixelratio,
res
),
args
))
# Save a cached copy of the plotObj. The recorded displaylist for
# the plot can't be serialized and restored properly within the same
# R session, so we NULL it out before saving. (The image data and
# other metadata be saved and restored just fine.) Displaylists can
# also be very large (~1.5MB for a basic ggplot), and they would not
# be commonly used. Note that displaylist serialization was fixed in
# revision 74506 (2e6c669), and should be in R 3.6. A MemoryCache
# doesn't need to serialize objects, so it could actually save a
# display list, but for the reasons listed previously, it's
# generally not worth it.
# The plotResult is not the same as the recordedPlot (it is used to
# retrieve coordmap information for ggplot2 objects) but it is only
# used in conjunction with the recordedPlot, and we'll remove it
# because it can be quite large.
result$plotObj$plotResult <- NULL
result$plotObj$recordedPlot <- NULL
cache$set(result$key, result$plotObj)
}
img <- result$plotObj$img
# Replace exact pixel dimensions; instead, the max-height and
# max-width will be set to 100% from CSS.
img$class <- "shiny-scalable"
img$width <- NULL
img$height <- NULL
img
}
)
}
# If renderPlot isn't going to adapt to the height of the div, then the
# div needs to adapt to the height of renderPlot. By default, plotOutput
# sets the height to 400px, so to make it adapt we need to override it
# with NULL.
outputFunc <- plotOutput
formals(outputFunc)['height'] <- list(NULL)
markRenderFunction(outputFunc, renderFunc, outputArgs = outputArgs)
}
#' Create a sizing function that grows at a given ratio
#'
#' Returns a function which takes a two-element vector representing an input
#' width and height, and returns a two-element vector of width and height. The
#' possible widths are the base width times the growthRate to any integer power.
#' For example, with a base width of 500 and growth rate of 1.25, the possible
#' widths include 320, 400, 500, 625, 782, and so on, both smaller and larger.
#' Sizes are rounded up to the next pixel. Heights are computed the same way as
#' widths.
#'
#' @param width,height Base width and height.
#' @param growthRate Growth rate multiplier.
#'
#' @seealso This is to be used with \code{\link{renderCachedPlot}}.
#'
#' @examples
#' f <- sizeGrowthRatio(500, 500, 1.25)
#' f(c(400, 400))
#' f(c(500, 500))
#' f(c(530, 550))
#' f(c(625, 700))
#'
#' @export
sizeGrowthRatio <- function(width = 400, height = 400, growthRate = 1.2) {
round_dim_up <- function(x, base, rate) {
power <- ceiling(log(x / base, rate))
ceiling(base * rate^power)
}
function(dims) {
if (length(dims) != 2) {
stop("dims must be a vector with two numbers, for width and height.")
}
c(
round_dim_up(dims[1], width, growthRate),
round_dim_up(dims[2], height, growthRate)
)
}
}
|