File: threefry.h

package info (click to toggle)
r-cran-sitmo 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,056 kB
  • sloc: cpp: 798; makefile: 2
file content (580 lines) | stat: -rw-r--r-- 18,728 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/* stdfin random/threefry.hpp header file
 *
 * Copyright Thijs van den Berg 2014-2015
 * 
 * Distributed under the MIT Software License.
 * See the accompanying file LICENSE or copy at http://opensource.org/licenses/MIT
 *
 */

#ifndef SITMO_RANDOM_THREEFRY_HPP
#define SITMO_RANDOM_THREEFRY_HPP

#include <istream>
#include <algorithm>
#include <cstdint>
#include <limits>

//debug
#include <iostream>
#include <iomanip>

namespace sitmo {

/**
* @brief The threefry random engine is a counter based random engine that uses a 
* stripped-down Threefish cryptographic function that is optimised for speed.
*
* The template parameter @p UIntType the return type of the random engine, must be an 
* unsigned integral type, e.g. uint64_t.
* The template parameter @p w is the width of the return type, the number of bits. 
* Valid values are 8,16,32,64. 
* The template parameter @p r the number of mix-rounds. 13 round or higher give very good 
* quality random numbers.
*
* @blockquote
* title:     Parallel random numbers: as easy as 1, 2, 3
* authors:   Salmon, John K. and Moraes, Mark A. and Dror, Ron O. and Shaw, David E.
* booktitle: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis
* publicher: ACM
* year:      2011
* isbn:      978-1-4503-0771-0
* @endblockquote
*
* @xmlnote
* The stdfin variant has been implemented from scratch and does not
* derive from or use the Random123 library provided at http://www.thesalmons.org/john/random123/
* However, it  was verified that both produce identical output.
* Output was verified against the threefry4x64 unit test cases from https://github.com/girving/random123/blob/master/examples/kat_vectors
* @endxmlnote
*/
namespace detail {

static const uint_least64_t threefry4x64_tweak = 0x1BD11BDAA9FC1A22;

// primary template
template< typename UIntType, std::size_t w>
struct extract4x64_impl {
  inline static UIntType zth(const uint_least64_t (&_output)[4]);
  inline static UIntType nth(const uint_least64_t (&_output)[4], std::size_t n);
  inline static constexpr UIntType w_max();
};

// specialisation
template< typename UIntType>
struct extract4x64_impl<UIntType,64> {
  inline static UIntType zth(const uint_least64_t (&_output)[4])
  { return _output[0]; }
  inline static UIntType nth(const uint_least64_t (&_output)[4], std::size_t n)
  { return _output[n]; }
  inline static constexpr UIntType w_max()
  { return 0xFFFFFFFFFFFFFFFF; }
};
template< typename UIntType>
struct extract4x64_impl<UIntType,32> {
  inline static UIntType zth(const uint_least64_t (&_output)[4])
  { return _output[0] & 0xFFFFFFFF; }
  inline static UIntType nth(const uint_least64_t (&_output)[4], std::size_t n)
  { return (_output[n>>1] >> ((n&1)<<5)) & 0xFFFFFFFF; }
  inline static constexpr UIntType w_max()
  { return 0xFFFFFFFF; }
};
template< typename UIntType>
struct extract4x64_impl<UIntType,16> {
  inline static UIntType zth(const uint_least64_t (&_output)[4])
  { return _output[0] & 0xFFFF; }
  inline static UIntType nth(const uint_least64_t (&_output)[4], std::size_t n)
  { return (_output[n>>2] >> ((n&3)<<4)) & 0xFFFF; }
  inline static constexpr UIntType w_max()
  { return 0xFFFF; }
};
template< typename UIntType>
struct extract4x64_impl<UIntType,8> {
  inline static UIntType zth(const uint_least64_t (&_output)[4])
  { return _output[0] & 0xFF; }
  inline static UIntType nth(const uint_least64_t (&_output)[4], std::size_t n)
  { return (_output[n>>3] >> ((n&7)<<3)) & 0xFF; }
  inline static constexpr UIntType w_max()
  { return 0xFF; }
};

template <class SeedSeq, class Eng>
struct is_seed_sequence {
  static constexpr bool value =
    !std::is_convertible<SeedSeq, typename Eng::result_type>::value &&
    !std::is_same<typename std::remove_cv<SeedSeq>::type, Eng>::value;
};    
}

template <  typename UIntType=uint32_t,  // the return type
            std::size_t w=32,            // number of bits in the return type
            std::size_t r=13             // number of rounds
>
class threefry_engine
{
public:
  // check for supported nr of bits in return type
  static_assert( w==8 || w==16 || w==32 || w==64, "threefry_engine: invalid template argument. Number of bits must be 8,16,32, or 64");
  
  // types
  typedef UIntType result_type;
  
  // engine characteristics
  static constexpr std::size_t word_size = w;
  static constexpr std::size_t rounds = r;
  static constexpr std::size_t samples_per_block = 256/w;
  
  /**
  * @brief Constructs the defafult %threefry_engine.
  */
  threefry_engine() 
  { seed(0); }
  
  /**
  * @brief Constructs a %threefry_engine random number
  *        generator engine with seed @p value.  The default seed value
  *        is 0.
  *
  * @param value The initial seed value.
  */
  explicit
    threefry_engine(UIntType value)
    { seed(value); }
  
  
  /**
  * @brief Constructs a %threefry_engine random number
  *        generator engine seeded from the seed sequence @p seq.
  *
  * @param seq the seed sequence.
  */
  template <class SeedSeq>
  explicit
    threefry_engine(SeedSeq& seq, typename std::enable_if<detail::is_seed_sequence<SeedSeq, threefry_engine>::value>::type* = 0)
    {
      seed(seq);
    }
  
  /**
  * @brief Re-seed the %threefry_engine to it's default seed.
  */
  void seed()
  {
    seed(0);
  }
  
  /**
  * @brief Re-seed the  %threefry_engine random number
  *        generator engine with the seed @p value.
  *        The default seed value is 0.
  *
  * @param value the new seed.
  */
  void seed(result_type value)
  {
    _key[0] = value;
    _key[1] = 0;
    _key[2] = 0;
    _key[3] = 0;
    reset_after_key_change();
  }
  
  /**
  * @brief Seeds the %threefry_engine random number
  *        generator engine with the seed sequence @p seq.
  *
  * @param seq the seed sequence.
  */
  template <class SeedSeq>
  void seed(SeedSeq& seq)
  {
    seed(seq, typename std::is_fundamental<SeedSeq>::type());
    reset_after_key_change();
  }
  
  
  /**
  * @brief Gets the smallest possible value in the output range.
  */
  static constexpr result_type (min)()
  { return 0; }
  
  /**
  * @brief Gets the largest possible value in the output range.
  */
  static constexpr result_type (max)()
  { return detail::extract4x64_impl<UIntType,w>::w_max(); }
  
  
  /**
  * @brief Generate a random sample.
  */
  result_type operator()()
  {
    // can we return a value from the current block?
    if (_o_counter < samples_per_block)
      return detail::extract4x64_impl<UIntType,w>::nth(_output, _o_counter++);
    
    // generate a new block and return the first result_type 
    inc_counter();
    encrypt_counter();
    _o_counter = 1; // the next call
    return detail::extract4x64_impl<UIntType,w>::zth(_output);
  }
  
  /**
  * @brief Discard a number of elements from the random numbers sequence.
  *
  * @param z the number of elements to discard.
  */
  void discard(unsigned long long z)
  {
    // check if we stay in the current block
    if (z < samples_per_block - _o_counter) {
      _o_counter += static_cast<unsigned short>(z);
      return;
    }
    
    // we will have to generate a new block...
    z -= (samples_per_block - _o_counter);  // discard the remainder of the current blok
    _o_counter = z % samples_per_block;     // set the pointer in the correct element in the new block
    z -= _o_counter;                        // update z
    z /= samples_per_block;                 // the number of 256 bit bocks to skip is z/samples_per_block
    ++z;                                    // and one more because we crossed the buffer line
    inc_counter(z);
    encrypt_counter();
  }
  
  /**
  * @brief Writes the textual representation of the state x(i) of x to
  *        @p _os.
  *
  * @param os  The output stream.
  * @param eng A %threefry_engine random number generator.
  * @returns os.
  */
  template<class CharT, class Traits>
  friend std::basic_ostream<CharT, Traits>&
  operator<<(std::basic_ostream<CharT, Traits>& os, const threefry_engine& eng)
  {
    for (unsigned short i=0; i<4; ++i)
      os << eng._key[i] << ' ';
    
    for (unsigned short i=0; i<4; ++i)
      os << eng._counter[i] << ' ';
    
    os << eng._o_counter;
    return os;
  }
  
  /**
  * @brief reads the textual representation of the state x(i) from
  *        @p is.
  *
  * @param is  The input stream.
  * @param eng A %threefry_engine random number generator.
  * @returns is.
  */
  template<class CharT, class Traits>
  friend std::basic_istream<CharT, Traits>&
  operator >> (std::basic_istream<CharT, Traits>& is, threefry_engine& eng)
  {
    for (unsigned short i=0; i<4; ++i) 
      is >> eng._key[i] >> std::ws;
    
    for (unsigned short i=0; i<4; ++i) 
      is >> eng._counter[i] >> std::ws;
    
    is >> eng._o_counter;
    
    eng._key[4] = detail::threefry4x64_tweak ^ eng._key[0] ^ eng._key[1] ^ eng._key[2] ^ eng._key[3];
    eng.encrypt_counter();
    return is;
  } 
  
  /**
  * @brief Compares two %threefry_engine
  * objects of the same type for equality.
  *
  *
  * @param _lhs A threefry engine.
  * @param _rhs Another threefry engine.
  *
  * @returns true if the infinite sequences of generated values
  *          would be equal, false otherwise.
  */
  friend bool 
    operator==(const threefry_engine& _lhs, const threefry_engine& _rhs) 
    {
      if (_lhs._o_counter != _rhs._o_counter) return false;
      
      for (unsigned short i=0; i<4; ++i) {
        if (_lhs._counter[i] != _rhs._counter[i]) return false;
        if (_lhs._key[i]     != _rhs._key[i])     return false;
        if (_lhs._output[i]  != _rhs._output[i])  return false;
      }
      return true;
    }
  
  /**
  * @brief Compares two threefry engines for inequality.
  *
  *
  * @param _lhs A threefry engine.
  * @param _rhs Another threefry engine.
  *
  * @returns true if the infinite sequences of generated values
  *          would not be equal, false otherwise.
  */
  friend bool 
    operator!=(const threefry_engine& _lhs, const threefry_engine& _rhs) 
    { return !(_lhs == _rhs); }
  
  // Extra function to set the key
  void set_key(uint64_t k0=0, uint64_t k1=0, uint64_t k2=0, uint64_t k3=0)
  {
    _key[0] = k0;
    _key[1] = k1;
    _key[2] = k2;
    _key[3] = k3;
    encrypt_counter();
  }
  
  // set the counter
  void set_counter(uint64_t s0=0, uint64_t s1=0, uint64_t s2=0, uint64_t s3=0, unsigned short o_counter=0)
  {
    _counter[0] = s0; 
    _counter[1] = s1; 
    _counter[2] = s2; 
    _counter[3] = s3;
    _o_counter = o_counter % 8;
    encrypt_counter();
  }
  
private:
  template<class Gen>
  void seed(Gen& gen, std::true_type)
  {
    return seed(static_cast<result_type>(gen));
  }
  
  template<class Gen>
  void seed(Gen& gen, std::false_type)
  {
    typename Gen::result_type data[8];
    gen.generate(&data[0], &data[8]);
    
    for (unsigned short i=0; i<4; ++i) {
      _key[i] = ( static_cast<uint64_t>(data[2*i]) << 32) | data[2*i+1];
      _counter[i] = 0;
    }
    _o_counter = 0;
  }
  
  
  inline void rotl64(uint_least64_t& v, const uint8_t bits) const
  { 
    v = (v << bits) | (v >> (sizeof(uint_least64_t) * 8 - bits)); 
  }
  
  inline void mix64(uint_least64_t& x0, uint64_t& x1, const uint8_t bits) const
  {
    x0 += x1;
    rotl64(x1, bits);
    x1 ^= x0;
  }
  
  inline void double_mix64(   uint_least64_t& x0, uint_least64_t& x1, const uint8_t rx,
                              uint_least64_t& z0, uint_least64_t& z1, const uint8_t rz) const
  {
    mix64(x0,x1,rx);
    mix64(z0,z1,rz);
  }
  
  template <std::size_t offset>
  inline void add_key64_t( uint_least64_t (&output)[4], uint_least64_t (&key)[5], const std::size_t c) const
  {
    output[0] += key[ offset   %5];
    output[1] += key[(offset+1)%5];
    output[2] += key[(offset+2)%5];
    output[3] += key[(offset+3)%5];
    output[3] += c;
  }
  
  template <std::size_t Rounds>
  inline void encrypt_counter_t(std::size_t& four_cycles)
  {
    if (Rounds>=1) double_mix64( _output[0], _output[1], 14, _output[2], _output[3], 16);
    if (Rounds>=2) double_mix64( _output[0], _output[3], 52, _output[2], _output[1], 57);
    if (Rounds>=3) double_mix64( _output[0], _output[1], 23, _output[2], _output[3], 40);
    if (Rounds>=4) {
      double_mix64( _output[0], _output[3],  5, _output[2], _output[1], 37);
      add_key64_t<1>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=5) double_mix64( _output[0], _output[1], 25, _output[2], _output[3], 33);
    if (Rounds>=6) double_mix64( _output[0], _output[3], 46, _output[2], _output[1], 12);
    if (Rounds>=7) double_mix64( _output[0], _output[1], 58, _output[2], _output[3], 22);
    if (Rounds>=8) {
      double_mix64( _output[0], _output[3], 32, _output[2], _output[1], 32);
      add_key64_t<2>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=9)  double_mix64( _output[0], _output[1], 14, _output[2], _output[3], 16);
    if (Rounds>=10) double_mix64( _output[0], _output[3], 52, _output[2], _output[1], 57);
    if (Rounds>=11) double_mix64( _output[0], _output[1], 23, _output[2], _output[3], 40);
    if (Rounds>=12) {
      double_mix64( _output[0], _output[3],  5, _output[2], _output[1], 37);
      add_key64_t<3>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=13) double_mix64( _output[0], _output[1], 25, _output[2], _output[3], 33);
    if (Rounds>=14) double_mix64( _output[0], _output[3], 46, _output[2], _output[1], 12);
    if (Rounds>=15) double_mix64( _output[0], _output[1], 58, _output[2], _output[3], 22);
    if (Rounds>=16) {
      double_mix64( _output[0], _output[3], 32, _output[2], _output[1], 32);
      add_key64_t<4>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=17) double_mix64( _output[0], _output[1], 14, _output[2], _output[3], 16);
    if (Rounds>=18) double_mix64( _output[0], _output[3], 52, _output[2], _output[1], 57);
    if (Rounds>=19) double_mix64( _output[0], _output[1], 23, _output[2], _output[3], 40);
    if (Rounds>=20) {
      double_mix64( _output[0], _output[3],  5, _output[2], _output[1], 37);
      add_key64_t<0>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=21) double_mix64( _output[0], _output[1], 25, _output[2], _output[3], 33);
    if (Rounds>=22) double_mix64( _output[0], _output[3], 46, _output[2], _output[1], 12);
    if (Rounds>=23) double_mix64( _output[0], _output[1], 58, _output[2], _output[3], 22);
    if (Rounds>=24) {
      double_mix64( _output[0], _output[3], 32, _output[2], _output[1], 32);
      add_key64_t<1>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=25) double_mix64( _output[0], _output[1], 14, _output[2], _output[3], 16);
    if (Rounds>=26) double_mix64( _output[0], _output[3], 52, _output[2], _output[1], 57);
    if (Rounds>=27) double_mix64( _output[0], _output[1], 23, _output[2], _output[3], 40);
    if (Rounds>=28) {
      double_mix64( _output[0], _output[3],  5, _output[2], _output[1], 37);
      add_key64_t<2>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=29) double_mix64( _output[0], _output[1], 25, _output[2], _output[3], 33);
    if (Rounds>=30) double_mix64( _output[0], _output[3], 46, _output[2], _output[1], 12);
    if (Rounds>=31) double_mix64( _output[0], _output[1], 58, _output[2], _output[3], 22);
    if (Rounds>=32) {
      double_mix64( _output[0], _output[3], 32, _output[2], _output[1], 32);
      add_key64_t<3>(_output, _key, ++four_cycles);
    }
    
    if (Rounds>=33) double_mix64( _output[0], _output[1], 14, _output[2], _output[3], 16);
    if (Rounds>=34) double_mix64( _output[0], _output[3], 52, _output[2], _output[1], 57);
    if (Rounds>=35) double_mix64( _output[0], _output[1], 23, _output[2], _output[3], 40);
    if (Rounds>=36) {
      double_mix64( _output[0], _output[3],  5, _output[2], _output[1], 37);
      add_key64_t<4>(_output, _key, ++four_cycles);
    }
    
    
    if (Rounds>=37) double_mix64( _output[0], _output[1], 25, _output[2], _output[3], 33);
    if (Rounds>=38) double_mix64( _output[0], _output[3], 46, _output[2], _output[1], 12);
    if (Rounds>=39) double_mix64( _output[0], _output[1], 58, _output[2], _output[3], 22);
    if (Rounds>=40) {
      double_mix64( _output[0], _output[3], 32, _output[2], _output[1], 32);
      add_key64_t<0>(_output, _key, ++four_cycles);
    }
  }
  
  void encrypt_counter()
  {
    for (std::size_t i=0; i<4; ++i) _output[i] = _counter[i];
    for (std::size_t i=0; i<4; ++i) _output[i] += _key[i];
    
    std::size_t four_cycles = 0;
    
    // do chunks of 40 rounds
    for (std::size_t big_rounds=0; big_rounds < r/40; ++big_rounds)
      encrypt_counter_t<40>(four_cycles);
    
    // the remaining rounds
    encrypt_counter_t<r - 40*(r/40)>(four_cycles);
  }
  
  // increment the counter with 1
  void inc_counter()
  {
    ++_counter[0]; if (_counter[0] != 0) return;
    ++_counter[1]; if (_counter[1] != 0) return;
    ++_counter[2]; if (_counter[2] != 0) return;
    ++_counter[3];
  }
  
  // increment the counter with z
  void inc_counter(uint_least64_t z)
  {
    if (z > 0xFFFFFFFFFFFFFFFF - _counter[0]) {   // check if we will overflow the first 64 bit of the counter
      ++_counter[1];
      if (_counter[1] == 0) {
        ++_counter[2];
        if (_counter[2] == 0) {
          ++_counter[3];
        }
      }
    }
    _counter[0] += z;
  }
  
  void reset_counter()
  {
    _counter[0] = 0;
    _counter[1] = 0;
    _counter[2] = 0;
    _counter[3] = 0;
    _o_counter  = 0;
  }
  
  // reset the counter to zero, and reset the keyx
  void reset_after_key_change()
  {
    _key[4] = detail::threefry4x64_tweak ^ _key[0] ^ _key[1] ^ _key[2] ^ _key[3];
    reset_counter();
    encrypt_counter();
  }
  
private:
  
  uint_least64_t _counter[4];   // the 256 bit counter (message) that gets encrypted
  uint_least64_t _output[4];    // the 256 bit cipher output 4 * 64 bit = 256 bit output
  uint_least64_t _key[5];       // the 256 bit encryption key
  uint_least16_t _o_counter;     // output chunk counter, e.g. for a 64 bit random engine
  // the 256 bit output buffer gets split in 4x64bit chunks or 8x32bit chunks chunks.
  /// \endcond
};

/**
* 32 bit version of the 13 rounds threefry engine
*/
typedef threefry_engine<uint32_t, 32, 13> threefry_13_32;

/**
 * 64 bit version of the 13 rounds threefry engine
 */
typedef threefry_engine<uint64_t, 64, 13> threefry_13_64;


/**
 * 32 bit version of the 20 rounds threefry engine
 */
typedef threefry_engine<uint32_t, 32, 20> threefry_20_32;

/**
 * 64 bit version of the 20 rounds threefry engine
 */
typedef threefry_engine<uint64_t, 64, 20> threefry_20_64;

typedef threefry_engine<uint32_t, 32, 13> threefry; // default

} // namespace sitmo

#endif // STDFIN_RANDOM_THREEFRY_HPP