File: exploringdatasets.html

package info (click to toggle)
r-cran-sjmisc 2.8.10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,232 kB
  • sloc: sh: 13; makefile: 2
file content (605 lines) | stat: -rw-r--r-- 34,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Daniel Lüdecke" />

<meta name="date" content="2024-05-13" />

<title>Exploring Data Sets</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Exploring Data Sets</h1>
<h4 class="author">Daniel Lüdecke</h4>
<h4 class="date">2024-05-13</h4>



<p>Tidying up, transforming and exploring data is an important part of
data analysis, and you can manage many common tasks in this process with
the <em>tidyverse</em> or related packages. The
<strong>sjmisc</strong>-package fits into this workflow, especially when
you work with <a href="https://cran.r-project.org/package=sjlabelled">labelled data</a>,
because it offers functions for data transformation and labelled data
utility functions. This vignette describes typical steps when beginning
with data exploration.</p>
<p>The examples are based on data from the EUROFAMCARE project, a survey
on the situation of family carers of older people in Europe. The sample
data set <code>efc</code> is part of this package. Let us see how the
family carer’s gender and subjective perception of negative impact of
care as well as the cared-for person’s dependency are associated with
the family carer’s quality of life.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(sjmisc)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a><span class="fu">data</span>(efc)</span></code></pre></div>
<div id="print-frequencies-with-labels" class="section level2">
<h2>Print frequencies with labels</h2>
<p>The first thing that may be of interest is probably the distribution
of gender. You can plot frequencies for labelled data with
<code>frq()</code>. This function requires either a vector or data frame
as input and prints the variable label as first line, followed by a
frequency-table with values, labels, counts and percentages of the
vector.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">frq</span>(efc<span class="sc">$</span>c161sex)</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="co">#&gt; carer&#39;s gender (x) &lt;numeric&gt; </span></span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="co">#&gt; # total N=908 valid N=901 mean=1.76 sd=0.43</span></span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="co">#&gt; Value |  Label |   N | Raw % | Valid % | Cum. %</span></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co">#&gt; -----------------------------------------------</span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="co">#&gt;     1 |   Male | 215 | 23.68 |   23.86 |  23.86</span></span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#&gt;     2 | Female | 686 | 75.55 |   76.14 | 100.00</span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#&gt;  &lt;NA&gt; |   &lt;NA&gt; |   7 |  0.77 |    &lt;NA&gt; |   &lt;NA&gt;</span></span></code></pre></div>
</div>
<div id="find-variables-in-a-data-frame" class="section level2">
<h2>Find variables in a data frame</h2>
<p>Next, let’s look at the distribution of gender by the cared-for
person’s dependency. To compute cross tables, you can use
<code>flat_table()</code>. It requires the data as first argument,
followed by any number of variable names.</p>
<p>But first, we need to know the name of the dependency-variable. This
is where <code>find_var()</code> comes into play. It searches for
variables in a data frame by</p>
<ol style="list-style-type: decimal">
<li>variable names,</li>
<li>variable labels,</li>
<li>value labels</li>
<li>or any combination of these.</li>
</ol>
<p>By default, it looks for variable name and labels. The function also
supports regex-patterns. By default, <code>find_var()</code> returns the
column-indices, but you can also print a small “summary”” with the
<code>out</code>-argument.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="co"># find all variables with &quot;dependency&quot; in name or label</span></span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">find_var</span>(efc, <span class="st">&quot;dependency&quot;</span>, <span class="at">out =</span> <span class="st">&quot;table&quot;</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="co">#&gt;   col.nr var.name          var.label</span></span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co">#&gt; 1      5   e42dep elder&#39;s dependency</span></span></code></pre></div>
<p>Variable in column 5, named <em>e42dep</em>, is what we are looking
for.</p>
</div>
<div id="print-crosstables-with-labels" class="section level2">
<h2>Print crosstables with labels</h2>
<p>Now we can look at the distribution of gender by dependency:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">flat_table</span>(efc, e42dep, c161sex)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="co">#&gt;                      c161sex Male Female</span></span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co">#&gt; e42dep                                  </span></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#&gt; independent                    18     48</span></span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#&gt; slightly dependent             54    170</span></span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#&gt; moderately dependent           80    226</span></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a><span class="co">#&gt; severely dependent             63    241</span></span></code></pre></div>
<p>Since the distribution of male and female carers is skewed, let’s see
the proportions. To compute crosstables with row or column percentages,
use the <code>margin</code>-argument:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">flat_table</span>(efc, e42dep, c161sex, <span class="at">margin =</span> <span class="st">&quot;col&quot;</span>)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#&gt;                      c161sex  Male Female</span></span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#&gt; e42dep                                   </span></span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#&gt; independent                   8.37   7.01</span></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#&gt; slightly dependent           25.12  24.82</span></span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#&gt; moderately dependent         37.21  32.99</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#&gt; severely dependent           29.30  35.18</span></span></code></pre></div>
</div>
<div id="recoding-variables" class="section level2">
<h2>Recoding variables</h2>
<p>Next, we need the negatice impact of care (<em>neg_c_7</em>) and want
to create three groups: low, middle and high negative impact. We can
easily recode and label vectors with <code>rec()</code>. This function
does not only recode vectors, it also allows direct labelling of
categories inside the recode-syntax (this is optional, you can also use
the <code>val.labels</code>-argument). We now recode <em>neg_c_7</em>
into a new variable <em>burden</em>. The cut-points are a bit arbitrary,
for the sake of demonstration.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>efc<span class="sc">$</span>burden <span class="ot">&lt;-</span> <span class="fu">rec</span>(</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>  efc<span class="sc">$</span>neg_c_7,</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a>  <span class="at">rec =</span> <span class="fu">c</span>(<span class="st">&quot;min:9=1 [low]; 10:12=2 [moderate]; 13:max=3 [high]; else=NA&quot;</span>),</span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a>  <span class="at">var.label =</span> <span class="st">&quot;Subjective burden&quot;</span>,</span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>  <span class="at">as.num =</span> <span class="cn">FALSE</span> <span class="co"># we want a factor</span></span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a>)</span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co"># print frequencies</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="fu">frq</span>(efc<span class="sc">$</span>burden)</span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#&gt; Subjective burden (x) &lt;categorical&gt; </span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#&gt; # total N=908 valid N=892 mean=2.03 sd=0.81</span></span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#&gt; Value |    Label |   N | Raw % | Valid % | Cum. %</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#&gt; -------------------------------------------------</span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#&gt;     1 |      low | 280 | 30.84 |   31.39 |  31.39</span></span>
<span id="cb6-15"><a href="#cb6-15" tabindex="-1"></a><span class="co">#&gt;     2 | moderate | 301 | 33.15 |   33.74 |  65.13</span></span>
<span id="cb6-16"><a href="#cb6-16" tabindex="-1"></a><span class="co">#&gt;     3 |     high | 311 | 34.25 |   34.87 | 100.00</span></span>
<span id="cb6-17"><a href="#cb6-17" tabindex="-1"></a><span class="co">#&gt;  &lt;NA&gt; |     &lt;NA&gt; |  16 |  1.76 |    &lt;NA&gt; |   &lt;NA&gt;</span></span></code></pre></div>
<p>You can see the variable <em>burden</em> has a variable label
(“Subjective burden”), which was set inside <code>rec()</code>, as well
as three values with labels (“low”, “moderate” and “high”). From the
lowest value in <em>neg_c_7</em> to 9 were recoded into 1, values 10 to
12 into 2 and values 13 to the highest value in <em>neg_c_7</em> into 3.
All remaining values are set to missing (<code>else=NA</code> – for
details on the recode-syntax, see <code>?rec</code>).</p>
</div>
<div id="grouped-data-frames" class="section level2">
<h2>Grouped data frames</h2>
<p>How is burden distributed by gender? We can group the data and print
frequencies using <code>frq()</code> for this as well, as this function
also accepts grouped data frames. Frequencies for grouped data frames
first print the group-details (variable name and category), followed by
the frequency table. Thanks to labelled data, the output is easy to
understand.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>efc <span class="sc">%&gt;%</span> </span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>  <span class="fu">select</span>(burden, c161sex) <span class="sc">%&gt;%</span> </span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a>  <span class="fu">group_by</span>(c161sex) <span class="sc">%&gt;%</span> </span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a>  <span class="fu">frq</span>()</span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#&gt; Subjective burden (burden) &lt;categorical&gt; </span></span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#&gt; # grouped by: Male</span></span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#&gt; # total N=215 valid N=212 mean=1.91 sd=0.81</span></span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#&gt; Value |    Label |  N | Raw % | Valid % | Cum. %</span></span>
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#&gt; ------------------------------------------------</span></span>
<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a><span class="co">#&gt;     1 |      low | 80 | 37.21 |   37.74 |  37.74</span></span>
<span id="cb7-12"><a href="#cb7-12" tabindex="-1"></a><span class="co">#&gt;     2 | moderate | 72 | 33.49 |   33.96 |  71.70</span></span>
<span id="cb7-13"><a href="#cb7-13" tabindex="-1"></a><span class="co">#&gt;     3 |     high | 60 | 27.91 |   28.30 | 100.00</span></span>
<span id="cb7-14"><a href="#cb7-14" tabindex="-1"></a><span class="co">#&gt;  &lt;NA&gt; |     &lt;NA&gt; |  3 |  1.40 |    &lt;NA&gt; |   &lt;NA&gt;</span></span>
<span id="cb7-15"><a href="#cb7-15" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb7-16"><a href="#cb7-16" tabindex="-1"></a><span class="co">#&gt; Subjective burden (burden) &lt;categorical&gt; </span></span>
<span id="cb7-17"><a href="#cb7-17" tabindex="-1"></a><span class="co">#&gt; # grouped by: Female</span></span>
<span id="cb7-18"><a href="#cb7-18" tabindex="-1"></a><span class="co">#&gt; # total N=686 valid N=679 mean=2.08 sd=0.81</span></span>
<span id="cb7-19"><a href="#cb7-19" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb7-20"><a href="#cb7-20" tabindex="-1"></a><span class="co">#&gt; Value |    Label |   N | Raw % | Valid % | Cum. %</span></span>
<span id="cb7-21"><a href="#cb7-21" tabindex="-1"></a><span class="co">#&gt; -------------------------------------------------</span></span>
<span id="cb7-22"><a href="#cb7-22" tabindex="-1"></a><span class="co">#&gt;     1 |      low | 199 | 29.01 |   29.31 |  29.31</span></span>
<span id="cb7-23"><a href="#cb7-23" tabindex="-1"></a><span class="co">#&gt;     2 | moderate | 229 | 33.38 |   33.73 |  63.03</span></span>
<span id="cb7-24"><a href="#cb7-24" tabindex="-1"></a><span class="co">#&gt;     3 |     high | 251 | 36.59 |   36.97 | 100.00</span></span>
<span id="cb7-25"><a href="#cb7-25" tabindex="-1"></a><span class="co">#&gt;  &lt;NA&gt; |     &lt;NA&gt; |   7 |  1.02 |    &lt;NA&gt; |   &lt;NA&gt;</span></span></code></pre></div>
</div>
<div id="nested-data-frames" class="section level2">
<h2>Nested data frames</h2>
<p>Let’s investigate the association between quality of life and burden
across the different dependency categories, by fitting linear models for
each category of <em>e42dep</em>. We can do this using <em>nested data
frames</em>. <code>nest()</code> from the <strong>tidyr</strong>-package
can create subsets of a data frame, based on grouping criteria, and
create a new <em>list-variable</em>, where each element itself is a data
frame (so it’s nested, because we have data frames inside a data
frame).</p>
<p>In the following example, we group the data by <em>e42dep</em>, and
“nest” the groups. Now we get a data frame with two columns: First, the
grouping variable (<em>e42dep</em>) and second, the datasets (subsets)
for each country as data frame, stored in the list-variable
<em>data</em>. The data frames in the subsets (in <em>data</em>) all
contain the selected variables <em>burden</em>, <em>c161sex</em> and
<em>quol_5</em> (quality of life).</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="co"># convert variable to labelled factor, because we then </span></span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co"># have the labels as factor levels in the output</span></span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a>efc<span class="sc">$</span>e42dep <span class="ot">&lt;-</span> <span class="fu">to_label</span>(efc<span class="sc">$</span>e42dep, <span class="at">drop.levels =</span> <span class="cn">TRUE</span>)</span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a>efc <span class="sc">%&gt;%</span></span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>  <span class="fu">select</span>(e42dep, burden, c161sex, quol_5) <span class="sc">%&gt;%</span></span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a>  <span class="fu">group_by</span>(e42dep) <span class="sc">%&gt;%</span></span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a>  tidyr<span class="sc">::</span><span class="fu">nest</span>()</span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 5 × 2</span></span>
<span id="cb8-9"><a href="#cb8-9" tabindex="-1"></a><span class="co">#&gt; # Groups:   e42dep [5]</span></span>
<span id="cb8-10"><a href="#cb8-10" tabindex="-1"></a><span class="co">#&gt;   e42dep               data              </span></span>
<span id="cb8-11"><a href="#cb8-11" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt;                &lt;list&gt;            </span></span>
<span id="cb8-12"><a href="#cb8-12" tabindex="-1"></a><span class="co">#&gt; 1 moderately dependent &lt;tibble [306 × 3]&gt;</span></span>
<span id="cb8-13"><a href="#cb8-13" tabindex="-1"></a><span class="co">#&gt; 2 severely dependent   &lt;tibble [304 × 3]&gt;</span></span>
<span id="cb8-14"><a href="#cb8-14" tabindex="-1"></a><span class="co">#&gt; 3 independent          &lt;tibble [66 × 3]&gt; </span></span>
<span id="cb8-15"><a href="#cb8-15" tabindex="-1"></a><span class="co">#&gt; 4 slightly dependent   &lt;tibble [225 × 3]&gt;</span></span>
<span id="cb8-16"><a href="#cb8-16" tabindex="-1"></a><span class="co">#&gt; 5 &lt;NA&gt;                 &lt;tibble [7 × 3]&gt;</span></span></code></pre></div>
</div>
<div id="get-coefficients-of-nested-models" class="section level2">
<h2>Get coefficients of nested models</h2>
<p>Using <code>map()</code> from the <strong>purrr</strong>-package, we
can iterate this list and apply any function on each data frame in the
list-variable “data”. We want to apply the <code>lm()</code>-function to
the list-variable, to run linear models for all “dependency-datasets”.
The results of these linear regressions are stored in another
list-variable, <em>models</em> (created with <code>mutate()</code>). To
quickly access and look at the coefficients, we can use
<code>spread_coef()</code>.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>efc <span class="sc">%&gt;%</span></span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>  <span class="fu">select</span>(e42dep, burden, c161sex, quol_5) <span class="sc">%&gt;%</span></span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>  <span class="fu">group_by</span>(e42dep) <span class="sc">%&gt;%</span></span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>  tidyr<span class="sc">::</span><span class="fu">nest</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>  <span class="fu">na.omit</span>() <span class="sc">%&gt;%</span>       <span class="co"># remove nested group for NA</span></span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a>  <span class="fu">arrange</span>(e42dep) <span class="sc">%&gt;%</span> <span class="co"># arrange by order of levels</span></span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">models =</span> purrr<span class="sc">::</span><span class="fu">map</span>(</span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a>    data, <span class="sc">~</span> </span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a>    <span class="fu">lm</span>(quol_5 <span class="sc">~</span> burden <span class="sc">+</span> c161sex, <span class="at">data =</span> .))</span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a>  ) <span class="sc">%&gt;%</span></span>
<span id="cb9-11"><a href="#cb9-11" tabindex="-1"></a>  <span class="fu">spread_coef</span>(models)</span>
<span id="cb9-12"><a href="#cb9-12" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 7</span></span>
<span id="cb9-13"><a href="#cb9-13" tabindex="-1"></a><span class="co">#&gt; # Groups:   e42dep [4]</span></span>
<span id="cb9-14"><a href="#cb9-14" tabindex="-1"></a><span class="co">#&gt;   e42dep               data     models `(Intercept)` burden2 burden3 c161sex</span></span>
<span id="cb9-15"><a href="#cb9-15" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt;                &lt;list&gt;   &lt;list&gt;         &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;</span></span>
<span id="cb9-16"><a href="#cb9-16" tabindex="-1"></a><span class="co">#&gt; 1 independent          &lt;tibble&gt; &lt;lm&gt;            18.8   -3.16   -4.94  -0.709</span></span>
<span id="cb9-17"><a href="#cb9-17" tabindex="-1"></a><span class="co">#&gt; 2 slightly dependent   &lt;tibble&gt; &lt;lm&gt;            19.8   -2.20   -2.48  -1.14 </span></span>
<span id="cb9-18"><a href="#cb9-18" tabindex="-1"></a><span class="co">#&gt; 3 moderately dependent &lt;tibble&gt; &lt;lm&gt;            17.9   -1.82   -5.29  -0.637</span></span>
<span id="cb9-19"><a href="#cb9-19" tabindex="-1"></a><span class="co">#&gt; 4 severely dependent   &lt;tibble&gt; &lt;lm&gt;            19.1   -3.66   -7.92  -0.746</span></span></code></pre></div>
<p>We see that higher burden is associated with lower quality of life,
for all dependency-groups. The <code>se</code> and
<code>p.val</code>-arguments add standard errors and p-values to the
output. <code>model.term</code> returns the statistics only for a
specific term. If you specify a <code>model.term</code>, arguments
<code>se</code> and <code>p.val</code> automatically default to
<code>TRUE</code>.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>efc <span class="sc">%&gt;%</span></span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>  <span class="fu">select</span>(e42dep, burden, c161sex, quol_5) <span class="sc">%&gt;%</span></span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>  <span class="fu">group_by</span>(e42dep) <span class="sc">%&gt;%</span></span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a>  tidyr<span class="sc">::</span><span class="fu">nest</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a>  <span class="fu">na.omit</span>() <span class="sc">%&gt;%</span>       <span class="co"># remove nested group for NA</span></span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a>  <span class="fu">arrange</span>(e42dep) <span class="sc">%&gt;%</span> <span class="co"># arrange by order of levels</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">models =</span> purrr<span class="sc">::</span><span class="fu">map</span>(</span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a>    data, <span class="sc">~</span> </span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a>    <span class="fu">lm</span>(quol_5 <span class="sc">~</span> burden <span class="sc">+</span> c161sex, <span class="at">data =</span> .))</span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a>  ) <span class="sc">%&gt;%</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a>  <span class="fu">spread_coef</span>(models, burden3)</span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 6</span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a><span class="co">#&gt; # Groups:   e42dep [4]</span></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a><span class="co">#&gt;   e42dep               data               models burden3 std.error  p.value</span></span>
<span id="cb10-15"><a href="#cb10-15" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt;                &lt;list&gt;             &lt;list&gt;   &lt;dbl&gt;     &lt;dbl&gt;    &lt;dbl&gt;</span></span>
<span id="cb10-16"><a href="#cb10-16" tabindex="-1"></a><span class="co">#&gt; 1 independent          &lt;tibble [66 × 3]&gt;  &lt;lm&gt;     -4.94     2.20  2.84e- 2</span></span>
<span id="cb10-17"><a href="#cb10-17" tabindex="-1"></a><span class="co">#&gt; 2 slightly dependent   &lt;tibble [225 × 3]&gt; &lt;lm&gt;     -2.48     0.694 4.25e- 4</span></span>
<span id="cb10-18"><a href="#cb10-18" tabindex="-1"></a><span class="co">#&gt; 3 moderately dependent &lt;tibble [306 × 3]&gt; &lt;lm&gt;     -5.29     0.669 5.22e-14</span></span>
<span id="cb10-19"><a href="#cb10-19" tabindex="-1"></a><span class="co">#&gt; 4 severely dependent   &lt;tibble [304 × 3]&gt; &lt;lm&gt;     -7.92     0.875 2.10e-17</span></span></code></pre></div>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>