1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
plot_diag_linear <- function(model,
geom.colors,
dot.size,
line.size,
...) {
plot.list <- list()
geom.colors <- col_check2(geom.colors, 2)
p <- diag_vif(model)
if (!is.null(p)) plot.list[[length(plot.list) + 1]] <- p
p <- diag_qq(model, geom.colors, dot.size, line.size)
if (!is.null(p)) plot.list[[length(plot.list) + 1]] <- p
p <- diag_reqq(model, dot.size)
if (!is.null(p)) plot.list[[length(plot.list) + 1]] <- p
p <- diag_norm(model, geom.colors)
if (!is.null(p)) plot.list[[length(plot.list) + 1]] <- p
p <- diag_ncv(model, dot.size, line.size)
if (!is.null(p)) plot.list[[length(plot.list) + 1]] <- p
plot.list
}
plot_diag_glm <- function(model, geom.colors, dot.size, line.size, ...) {
geom.colors <- col_check2(geom.colors, 2)
diag_reqq(model, dot.size)
}
#' @importFrom stats residuals fitted
diag_ncv <- function(model, dot.size, line.size) {
if (is.null(dot.size)) dot.size <- 1
if (is.null(line.size)) line.size <- 1
dat <- data.frame(
res = stats::residuals(model),
fitted = stats::fitted(model)
)
ggplot(dat, aes_string(x = "fitted", y = "res")) +
geom_intercept_line2(0, NULL) +
geom_point(size = dot.size) +
geom_smooth(method = "loess", se = FALSE, size = line.size) +
labs(
x = "Fitted values",
y = "Residuals",
title = "Homoscedasticity (constant variance of residuals)",
subtitle = "Amount and distance of points scattered above/below line is equal or randomly spread"
)
}
#' @importFrom rlang .data
#' @importFrom stats residuals sd
diag_norm <- function(model, geom.colors) {
res_ <- data.frame(res = stats::residuals(model))
ggplot(res_, aes_string(x = "res")) +
geom_density(fill = geom.colors[1], alpha = 0.2) +
stat_function(
fun = dnorm,
args = list(
mean = mean(unname(stats::residuals(model)), na.rm = TRUE),
sd = stats::sd(unname(stats::residuals(model)), na.rm = TRUE)
),
colour = geom.colors[2],
size = 0.8
) +
labs(
x = "Residuals",
y = "Density",
title = "Non-normality of residuals",
subtitle = "Distribution should look like normal curve"
)
}
#' @importFrom stats residuals rstudent fitted
diag_qq <- function(model, geom.colors, dot.size, line.size, ...) {
if (is.null(dot.size)) dot.size <- 1
if (is.null(line.size)) line.size <- 1
# qq-plot of studentized residuals
if (inherits(model, c("lme", "lmerMod", "glmmTMB"))) {
res_ <- sort(stats::residuals(model), na.last = NA)
y_lab <- "Residuals"
} else {
# else, normal model
res_ <- sort(stats::rstudent(model), na.last = NA)
y_lab <- "Studentized Residuals"
}
fitted_ <- sort(stats::fitted(model), na.last = NA)
# create data frame
mydf <- stats::na.omit(data.frame(x = fitted_, y = res_))
# plot it
ggplot(mydf, aes_string(x = "x", y = "y")) +
geom_point(size = dot.size) +
scale_colour_manual(values = geom.colors) +
stat_smooth(method = "lm", se = FALSE, size = line.size) +
labs(
title = "Non-normality of residuals and outliers",
subtitle = "Dots should be plotted along the line",
y = y_lab,
x = "Theoretical quantiles (predicted values)"
)
}
#' @importFrom purrr map map_dbl
#' @importFrom stats qnorm ppoints
diag_reqq <- function(model, dot.size) {
if (!is_merMod(model) && !inherits(model, "glmmTMB")) return(NULL)
if (!requireNamespace("lme4", quietly = TRUE)) {
stop("Package 'lme4' required for this function to work, please install it.")
}
if (!requireNamespace("glmmTMB", quietly = TRUE)) {
stop("Package 'glmmTMB' required for this function to work, please install it.")
}
if (inherits(model, "glmmTMB")) {
re <- glmmTMB::ranef(model)[[1]]
s1 <- TMB::sdreport(model$obj, getJointPrecision = TRUE)
s2 <- sqrt(s1$diag.cov.random)
se <- purrr::map(re, function(.x) {
cnt <- nrow(.x) * ncol(.x)
s3 <- s2[1:cnt]
s2 <- s2[-(1:cnt)]
s3
})
} else {
re <- lme4::ranef(model, condVar = T)
se <- purrr::map(re, function(.x) {
pv <- attr(.x, "postVar")
cols <- seq_len(dim(pv)[1])
unlist(lapply(cols, function(.y) sqrt(pv[.y, .y, ])))
})
}
alpha <- .3
if (is.null(dot.size)) dot.size <- 2
# get ...-arguments
add.args <- lapply(match.call(expand.dots = F)$`...`, function(x) x)
if ("alpha" %in% names(add.args)) alpha <- eval(add.args[["alpha"]])
purrr::map2(re, se, function(.re, .se) {
ord <- unlist(lapply(.re, order)) + rep((0:(ncol(.re) - 1)) * nrow(.re), each = nrow(.re))
df.y <- unlist(.re)[ord]
df.ci <- stats::qnorm(.975) * .se[ord]
pDf <- data_frame(
y = df.y,
ci = df.ci,
nQQ = rep(stats::qnorm(stats::ppoints(nrow(.re))), ncol(.re)),
ID = factor(rep(rownames(.re), ncol(.re))[ord], levels = rownames(.re)[ord]),
ind = gl(ncol(.re), nrow(.re), labels = names(.re)),
conf.low = df.y - df.ci,
conf.high = df.y + df.ci
)
ggplot(pDf, aes_string(
x = "nQQ",
y = "y"
)) +
facet_wrap(~ ind, scales = "free") +
labs(x = "Standard normal quantiles", y = "Random effect quantiles") +
geom_intercept_line2(0, NULL) +
stat_smooth(method = "lm", alpha = alpha) +
geom_errorbar(
aes_string(ymin = "conf.low", ymax = "conf.high"),
width = 0,
colour = "black"
) +
geom_point(size = dot.size, colour = "darkblue")
})
}
#' @importFrom stats coef
diag_vif <- function(fit) {
if (is_merMod(fit) || inherits(fit, "lme"))
return(NULL)
if (!requireNamespace("car", quietly = TRUE))
stop("Package `car` needed for this function to work. Please install it.", call. = F)
vifplot <- NULL
# check if we have more than 1 term
if (length(stats::coef(fit)) > 2) {
# variance inflation factor
# claculate VIF
vifval <- car::vif(fit)
if (is.matrix(vifval)) {
val <- vifval[, 1]
} else {
val <- vifval
}
# retrieve highest VIF-value to determine y-axis range
maxval <- val[which.max(val)]
# determine upper limit of y-axis
upperLimit <- 10
# check whether maxval exceeds the critical VIF-Limit
# of 10. If so, set upper limit to max. value
if (maxval >= upperLimit) upperLimit <- ceiling(maxval)
mydat <- data.frame(vif = round(val, 2)) %>%
rownames_as_column(var = "vars")
vifplot <- ggplot(mydat, aes_string(x = "vars", y = "vif")) +
geom_bar(stat = "identity", width = 0.7, fill = "#80acc8") +
geom_hline(yintercept = 5, linetype = 2, colour = "darkgreen", alpha = 0.7) +
geom_hline(yintercept = 10, linetype = 2, colour = "darkred", alpha = 0.7) +
annotate("text", x = 1, y = 4.7, label = "good", size = 4, colour = "darkgreen") +
annotate("text", x = 1, y = 9.7, label = "tolerable", size = 4, colour = "darkred") +
labs(title = "Variance Inflation Factors (multicollinearity)", x = NULL, y = NULL) +
scale_y_continuous(limits = c(0, upperLimit), expand = c(0, 0))
}
vifplot
}
|