1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
utils::globalVariables("density")
#' @title Plot frequencies of variables
#' @name plot_frq
#'
#' @description Plot frequencies of a variable as bar graph, histogram, box plot etc.
#'
#' @note This function only works with variables with integer values (or numeric
#' factor levels), i.e. scales / centered variables
#' with fractional part may result in unexpected behaviour.
#'
#' @param ... Optional, unquoted names of variables that should be selected for
#' further processing. Required, if \code{data} is a data frame (and no
#' vector) and only selected variables from \code{data} should be processed.
#' You may also use functions like \code{:} or tidyselect's
#' select_helpers.
#' @param sort.frq Determines whether categories should be sorted
#' according to their frequencies or not. Default is \code{"none"}, so
#' categories are not sorted by frequency. Use \code{"asc"} or
#' \code{"desc"} for sorting categories ascending or descending order.
#' @param geom.colors User defined color for geoms, e.g. \code{geom.colors = "#0080ff"}.
#' @param errorbar.color Color of confidence interval bars (error bars).
#' Only applies to \code{type = "bar"}. In case of dot plots, error bars
#' will have same colors as dots (see \code{geom.colors}).
#' @param show.mean Logical, if \code{TRUE}, a vertical line in histograms
#' is drawn to indicate the mean value of the variables. Only
#' applies to histogram-charts.
#' @param show.mean.val Logical, if \code{TRUE} (default), the mean value
#' is printed to the vertical line that indicates the variable's
#' mean. Only applies to histogram-charts.
#' @param show.sd Logical, if \code{TRUE}, the standard deviation
#' is annotated as shaded rectangle around the mean intercept
#' line. Only applies to histogram-charts.
#' @param mean.line.type Numeric value, indicating the linetype of the mean
#' intercept line. Only applies to histogram-charts and
#' when \code{show.mean = TRUE}.
#' @param mean.line.size Numeric, size of the mean intercept line. Only
#' applies to histogram-charts and when \code{show.mean = TRUE}.
#' @param normal.curve Logical, if \code{TRUE}, a normal curve, which is adjusted to the data,
#' is plotted over the histogram or density plot. Default is
#' \code{FALSE}. Only applies when histograms or density plots are plotted (see \code{type}).
#' @param normal.curve.color Color of the normal curve line. Only
#' applies if \code{normal.curve = TRUE}.
#' @param normal.curve.size Numeric, size of the normal curve line. Only
#' applies if \code{normal.curve = TRUE}.
#' @param normal.curve.alpha Transparancy level (alpha value) of the normal curve. Only
#' applies if \code{normal.curve = TRUE}.
#' @param xlim Numeric vector of length two, defining lower and upper axis limits
#' of the x scale. By default, this argument is set to \code{NULL}, i.e. the
#' x-axis fits to the required range of the data.
#' @param axis.title Character vector of length one or two (depending on
#' the plot function and type), used as title(s) for the x and y axis.
#' If not specified, a default labelling is chosen.
#' \strong{Note:} Some plot types do not support this argument. In such
#' cases, use the return value and add axis titles manually with
#' \code{\link[ggplot2]{labs}}, e.g.: \code{$plot.list[[1]] + labs(x = ...)}
#'
#' @inheritParams plot_scatter
#' @inheritParams plot_grpfrq
#' @inheritParams tab_xtab
#'
#' @return A ggplot-object.
#'
#' @examples
#' library(sjlabelled)
#' data(efc)
#' data(iris)
#'
#' # simple plots, two different notations
#' plot_frq(iris, Species)
#' plot_frq(efc$tot_sc_e)
#'
#' # boxplot
#' plot_frq(efc$e17age, type = "box")
#'
#' if (require("dplyr")) {
#' # histogram, pipe-workflow
#' efc %>%
#' dplyr::select(e17age, c160age) %>%
#' plot_frq(type = "hist", show.mean = TRUE)
#'
#' # bar plot(s)
#' plot_frq(efc, e42dep, c172code)
#' }
#'
#' if (require("dplyr") && require("gridExtra")) {
#' # grouped data frame, all panels in one plot
#' efc %>%
#' group_by(e42dep) %>%
#' plot_frq(c161sex) %>%
#' plot_grid()
#' }
#'
#' \donttest{
#' library(sjmisc)
#' # grouped variable
#' ageGrp <- group_var(efc$e17age)
#' ageGrpLab <- group_labels(efc$e17age)
#' plot_frq(ageGrp, title = get_label(efc$e17age), axis.labels = ageGrpLab)
#'
#' # plotting confidence intervals. expand grid and v/hjust for text labels
#' plot_frq(
#' efc$e15relat, type = "dot", show.ci = TRUE, sort.frq = "desc",
#' coord.flip = TRUE, expand.grid = TRUE, vjust = "bottom", hjust = "left"
#' )
#'
#' # histogram with overlayed normal curve
#' plot_frq(efc$c160age, type = "h", show.mean = TRUE, show.mean.val = TRUE,
#' normal.curve = TRUE, show.sd = TRUE, normal.curve.color = "blue",
#' normal.curve.size = 3, ylim = c(0,50))
#' }
#' @import ggplot2
#' @importFrom sjmisc group_labels group_var to_value frq
#' @importFrom sjlabelled set_labels drop_labels
#' @importFrom stats na.omit sd weighted.mean dnorm
#' @importFrom rlang .data
#' @export
plot_frq <- function(data,
...,
title = "",
weight.by = NULL,
title.wtd.suffix = NULL,
sort.frq = c("none", "asc", "desc"),
type = c("bar", "dot", "histogram", "line", "density", "boxplot", "violin"),
geom.size = NULL,
geom.colors = "#336699",
errorbar.color = "darkred",
axis.title = NULL,
axis.labels = NULL,
xlim = NULL,
ylim = NULL,
wrap.title = 50,
wrap.labels = 20,
grid.breaks = NULL,
expand.grid = FALSE,
show.values = TRUE,
show.n = TRUE,
show.prc = TRUE,
show.axis.values = TRUE,
show.ci = FALSE,
show.na = FALSE,
show.mean = FALSE,
show.mean.val = TRUE,
show.sd = TRUE,
drop.empty = TRUE,
mean.line.type = 2,
mean.line.size = 0.5,
inner.box.width = 0.15,
inner.box.dotsize = 3,
normal.curve = FALSE,
normal.curve.color = "red",
normal.curve.size = 0.8,
normal.curve.alpha = 0.4,
auto.group = NULL,
coord.flip = FALSE,
vjust = "bottom",
hjust = "center",
y.offset = NULL) {
# Match arguments -----
type <- match.arg(type)
sort.frq <- match.arg(sort.frq)
plot_data <- get_dplyr_dot_data(data, dplyr::quos(...))
if (!is.data.frame(plot_data)) {
plot_data <- data.frame(plot_data, stringsAsFactors = FALSE)
colnames(plot_data) <- deparse(substitute(data))
}
pl <- NULL
if (inherits(plot_data, "grouped_df")) {
# get grouped data
grps <- get_grouped_data(plot_data)
# now plot everything
for (i in seq_len(nrow(grps))) {
# copy back labels to grouped data frame
tmp <- sjlabelled::copy_labels(grps$data[[i]], data)
# prepare argument list, including title
tmp.title <- get_grouped_plottitle(plot_data, grps, i, sep = "\n")
# plot
plots <- lapply(colnames(tmp), function(.d) {
plot_frq_helper(
var.cnt = tmp[[.d]], title = tmp.title, weight.by = weight.by, title.wtd.suffix, sort.frq, type, geom.size, geom.colors,
errorbar.color, axis.title, axis.labels, xlim, ylim, wrap.title, wrap.labels, grid.breaks,
expand.grid, show.values, show.n, show.prc, show.axis.values, show.ci, show.na,
show.mean, show.mean.val, show.sd, drop.empty, mean.line.type, mean.line.size,
inner.box.width, inner.box.dotsize, normal.curve, normal.curve.color,
normal.curve.size, normal.curve.alpha, auto.group, coord.flip, vjust,
hjust, y.offset, var.name = .d
)
})
# add plots, check for NULL results
pl <- c(pl, plots)
}
} else {
pl <- lapply(colnames(plot_data), function(.d) {
plot_frq_helper(
var.cnt = plot_data[[.d]], title, weight.by = weight.by, title.wtd.suffix, sort.frq, type, geom.size, geom.colors,
errorbar.color, axis.title, axis.labels, xlim, ylim, wrap.title, wrap.labels, grid.breaks,
expand.grid, show.values, show.n, show.prc, show.axis.values, show.ci, show.na,
show.mean, show.mean.val, show.sd, drop.empty, mean.line.type, mean.line.size,
inner.box.width, inner.box.dotsize, normal.curve, normal.curve.color,
normal.curve.size, normal.curve.alpha, auto.group, coord.flip, vjust,
hjust, y.offset, var.name = .d
)
})
if (length(pl) == 1) pl <- pl[[1]]
}
pl
}
plot_frq_helper <- function(
var.cnt, title, weight.by, title.wtd.suffix, sort.frq, type, geom.size, geom.colors,
errorbar.color, axis.title, axis.labels, xlim, ylim, wrap.title, wrap.labels, grid.breaks,
expand.grid, show.values, show.n, show.prc, show.axis.values, show.ci, show.na,
show.mean, show.mean.val, show.sd, drop.empty, mean.line.type, mean.line.size,
inner.box.width, inner.box.dotsize, normal.curve, normal.curve.color,
normal.curve.size, normal.curve.alpha, auto.group, coord.flip, vjust,
hjust, y.offset, var.name = NULL) {
# remove empty value-labels
if (drop.empty) {
var.cnt <- sjlabelled::drop_labels(var.cnt)
}
# try to find some useful default offsets for textlabels,
# depending on plot range and flipped coordinates
if (is.null(y.offset)) {
# get maximum y-pos
y.offset <- ceiling(max(table(var.cnt)) / 100)
if (coord.flip) {
if (missing(vjust)) vjust <- "center"
if (missing(hjust)) hjust <- "bottom"
if (hjust == "bottom")
y_offset <- y.offset
else if (hjust == "top")
y_offset <- -y.offset
else
y_offset <- 0
} else {
if (vjust == "bottom")
y_offset <- y.offset
else if (vjust == "top")
y_offset <- -y.offset
else
y_offset <- 0
}
} else {
y_offset <- y.offset
}
if (is.null(axis.title)) axis.title <- sjlabelled::get_label(var.cnt, def.value = var.name)
if (is.null(title)) title <- sjlabelled::get_label(var.cnt, def.value = var.name)
# remove titles if empty
if (!is.null(axis.title) && axis.title == "") axis.title <- NULL
if (!is.null(title) && title == "") title <- NULL
# check color argument
if (length(geom.colors) > 1) geom.colors <- geom.colors[1]
# default grid-expansion
if (isTRUE(expand.grid) || (missing(expand.grid) && type == "histogram")) {
expand.grid <- waiver()
} else {
expand.grid <- c(0, 0)
}
# for histograms or density plots...
xv <- sjmisc::to_value(stats::na.omit(var.cnt))
# check for nice bin-width defaults
if (type %in% c("histogram", "density") &&
!is.null(geom.size) &&
geom.size < round(diff(range(xv)) / 40))
message("Using very small binwidth. Consider adjusting `geom.size` argument.")
# create second data frame
hist.dat <- data.frame(xv)
# check default geom.size -----
if (is.null(geom.size)) {
geom.size <- dplyr::case_when(
type == "bar" ~ .7,
type == "dot" ~ 2.5,
type == "density" ~ ceiling(diff(range(xv)) / 40),
type == "histogram" ~ ceiling(diff(range(xv)) / 40),
type == "line" ~ .8,
type == "boxplot" ~ .3,
type == "violin" ~ .3,
TRUE ~ .7
)
}
# check whether variable should be auto-grouped -----
if (!is.null(auto.group) && length(unique(var.cnt)) >= auto.group) {
message(sprintf(
"`%s` has %i unique values and was grouped...",
var.name,
length(unique(var.cnt))
))
}
if (!is.null(weight.by)) {
dat <- data.frame(
var.cnt = var.cnt,
weight.by = weight.by,
stringsAsFactors = FALSE
)
} else {
dat <- data.frame(
var.cnt = var.cnt,
stringsAsFactors = FALSE
)
}
# create frequency data frame -----
df.frq <- suppressMessages(sjmisc::frq(
x = dat,
"var.cnt",
sort.frq = sort.frq,
weights = "weight.by",
auto.grp = auto.group,
show.na = show.na
))
mydat <- df.frq[[1]]
# remove empty
if (drop.empty) mydat <- mydat[mydat$frq > 0, ]
# add confindence intervals for frequencies
total_n = sum(mydat$frq)
rel_frq <- as.numeric(mydat$frq / total_n)
ci <- 1.96 * suppressWarnings(sqrt(rel_frq * (1 - rel_frq) / total_n))
mydat$upper.ci <- total_n * (rel_frq + ci)
mydat$lower.ci <- total_n * (rel_frq - ci)
mydat$rel.upper.ci <- rel_frq + ci
mydat$rel.lower.ci <- rel_frq - ci
# any labels detected?
if (!is.null(mydat$label) && is.null(axis.labels) && !all(stats::na.omit(mydat$label) == "<none>"))
axis.labels <- mydat$label
else if (is.null(axis.labels))
axis.labels <- mydat$val
# wrap labels
axis.labels <- sjmisc::word_wrap(axis.labels, wrap.labels)
# define text label position
if (show.ci)
mydat$label.pos <- mydat$upper.ci
else
mydat$label.pos <- mydat$frq
# Trim labels and title to appropriate size -----
# check length of diagram title and split longer string into new lines
# every 50 chars
if (!is.null(title)) {
# if we have weighted values, say that in diagram's title
if (!is.null(title.wtd.suffix)) title <- paste(title, title.wtd.suffix, sep = "")
title <- sjmisc::word_wrap(title, wrap.title)
}
# check length of x-axis title and split longer string into new lines
# every 50 chars
if (!is.null(axis.title)) axis.title <- sjmisc::word_wrap(axis.title, wrap.title)
# count variable may not be a factor!
if (is.factor(var.cnt) || is.character(var.cnt)) {
var.cnt <- sjmisc::to_value(var.cnt, keep.labels = F)
}
# If we have a histogram, caluclate means of groups
if (is.null(weight.by)) {
mittelwert <- mean(var.cnt, na.rm = TRUE)
stddev <- stats::sd(var.cnt, na.rm = TRUE)
} else {
mittelwert <- stats::weighted.mean(var.cnt, weight.by, na.rm = TRUE)
stddev <- datawizard::weighted_sd(var.cnt, weights = weight.by)
}
# If we have boxplots, use different data frame structure
if (type == "boxplot" || type == "violin") {
mydat <- stats::na.omit(data.frame(cbind(
grp = 1,
frq = var.cnt,
val = var.cnt
)))
mydat$grp <- as.factor(mydat$grp)
}
# Prepare bar charts
trimViolin <- FALSE
lower_lim <- 0
# calculate upper y-axis-range
# if we have a fixed value, use this one here
if (!is.null(ylim) && length(ylim) == 2) {
lower_lim <- ylim[1]
upper_lim <- ylim[2]
} else {
# if we have boxplots, we have different ranges, so we can adjust
# the y axis
if (type == "boxplot" || type == "violin") {
# use an extra standard-deviation as limits for the y-axis when we have boxplots
lower_lim <- min(var.cnt, na.rm = TRUE) - floor(stats::sd(var.cnt, na.rm = TRUE))
upper_lim <- max(var.cnt, na.rm = TRUE) + ceiling(stats::sd(var.cnt, na.rm = TRUE))
# make sure that the y-axis is not below zero
if (lower_lim < 0) {
lower_lim <- 0
trimViolin <- TRUE
}
} else if (type == "histogram") {
# what is the maximum values after binning for histograms?
hist.grp.cnt <- ceiling(diff(range(var.cnt, na.rm = T)) / geom.size)
# ... or the amount of max. answers per category
# add 10% margin to upper limit
upper_lim <- max(pretty(table(
sjmisc::group_var(
var.cnt,
size = "auto",
n = hist.grp.cnt,
append = FALSE
)
) * 1.1))
} else {
if (show.ci)
upper_lim <- max(pretty(mydat$upper.ci * 1.1))
else
upper_lim <- max(pretty(mydat$frq * 1.1))
}
}
# If we want to include NA, use raw percentages as valid percentages
if (show.na) mydat$valid.prc <- mydat$raw.prc
# don't display value labels when we have boxplots or violin plots
if (type == "boxplot" || type == "violin") show.values <- FALSE
if (show.values) {
# here we have counts and percentages
if (show.prc && show.n) {
if (coord.flip) {
ggvaluelabels <-
geom_text(
label = sprintf("%i (%.01f%%)", mydat$frq, mydat$valid.prc),
hjust = hjust,
vjust = vjust,
aes(y = .data$label.pos + y_offset)
)
} else {
ggvaluelabels <-
geom_text(
label = sprintf("%i\n(%.01f%%)", mydat$frq, mydat$valid.prc),
hjust = hjust,
vjust = vjust,
aes(y = .data$label.pos + y_offset)
)
}
} else if (show.n) {
# here we have counts, without percentages
ggvaluelabels <- geom_text(
label = sprintf("%i", mydat$frq),
hjust = hjust,
vjust = vjust,
aes(y = .data$label.pos + y_offset)
)
} else if (show.prc) {
# here we have counts, without percentages
ggvaluelabels <-
geom_text(
label = sprintf("%.01f%%", mydat$valid.prc),
hjust = hjust,
vjust = vjust,
aes(y = .data$label.pos + y_offset)
)
} else {
# no labels
ggvaluelabels <- geom_text(aes(y = .data$frq), label = "")
}
} else {
# no labels
ggvaluelabels <- geom_text(aes(y = .data$frq), label = "")
}
# Set up grid breaks
maxx <- if (is.numeric(mydat$val))
max(mydat$val) + 1
else
nrow(mydat)
if (is.null(grid.breaks)) {
gridbreaks <- waiver()
histgridbreaks <- waiver()
} else {
gridbreaks <- c(seq(lower_lim, upper_lim, by = grid.breaks))
histgridbreaks <- c(seq(lower_lim, maxx, by = grid.breaks))
}
# set Y-axis, depending on the calculated upper y-range.
# It either corresponds to the maximum amount of cases in the data set
# (length of var) or to the highest count of var's categories.
if (show.axis.values) {
yscale <- scale_y_continuous(
limits = c(lower_lim, upper_lim),
expand = expand.grid,
breaks = gridbreaks
)
} else {
yscale <- scale_y_continuous(
limits = c(lower_lim, upper_lim),
expand = expand.grid,
breaks = gridbreaks,
labels = NULL
)
}
# bar and dot plot start here! -----
if (type == "bar" || type == "dot") {
# define geom
if (type == "bar") {
geob <- geom_bar(stat = "identity", width = geom.size, fill = geom.colors)
} else if (type == "dot") {
geob <- geom_point(size = geom.size, colour = geom.colors)
}
# as factor, but preserve order
mydat$val <- factor(mydat$val, levels = unique(mydat$val))
# mydat is a data frame that only contains one variable (var).
# Must be declared as factor, so the bars are central aligned to
# each x-axis-break.
baseplot <- ggplot(mydat, aes(x = .data$val, y = .data$frq)) +
geob +
yscale +
# remove guide / legend
guides(fill = "none") +
# show absolute and percentage value of each bar.
ggvaluelabels +
# print value labels to the x-axis.
# If argument "axis.labels" is NULL, the category numbers (1 to ...)
# appear on the x-axis
scale_x_discrete(labels = axis.labels)
# add error bars
if (show.ci) {
ebcol <- ifelse(type == "dot", geom.colors, errorbar.color)
# print confidence intervalls (error bars)
baseplot <- baseplot +
geom_errorbar(aes_string(ymin = "lower.ci", ymax = "upper.ci"), colour = ebcol, width = 0)
}
# check whether coordinates should be flipped, i.e.
# swap x and y axis
if (coord.flip) baseplot <- baseplot + coord_flip()
# Start box plot here -----
} else if (type == "boxplot" || type == "violin") {
# setup base plot
baseplot <- ggplot(mydat, aes_string(x = "grp", y = "frq"))
# and x-axis
scalex <- scale_x_discrete(labels = "")
if (type == "boxplot") {
baseplot <- baseplot +
geom_boxplot(width = geom.size, fill = geom.colors, notch = show.ci)
} else {
baseplot <- baseplot +
geom_violin(trim = trimViolin, width = geom.size, fill = geom.colors)
# if we have a violin plot, add an additional boxplot inside to show
# more information
if (show.ci) {
baseplot <- baseplot +
geom_boxplot(width = inner.box.width, fill = "white", notch = TRUE)
} else {
baseplot <- baseplot +
geom_boxplot(width = inner.box.width, fill = "white")
}
}
# if we have boxplots or violon plots, also add a point that indicates
# the mean value
# different fill colours, because violin boxplots have white background
fcsp <- ifelse(type == "boxplot", "white", "black")
baseplot <- baseplot +
stat_summary(fun = "mean", geom = "point", shape = 21,
size = inner.box.dotsize, fill = fcsp)
# no additional labels for the x- and y-axis, only diagram title
baseplot <- baseplot + yscale + scalex
# Start density plot here -----
} else if (type == "density") {
# First, plot histogram with density curve
baseplot <- ggplot(hist.dat, aes(x = .data$xv)) +
geom_histogram(aes(y = stat(density)), binwidth = geom.size, fill = geom.colors) +
# transparent density curve above bars
geom_density(aes(y = stat(density)), fill = "cornsilk", alpha = 0.3) +
# remove margins from left and right diagram side
scale_x_continuous(expand = expand.grid, breaks = histgridbreaks, limits = xlim)
# check whether user wants to overlay the histogram
# with a normal curve
if (normal.curve) {
baseplot <- baseplot +
stat_function(
fun = dnorm,
args = list(
mean = mean(hist.dat$xv),
sd = stats::sd(hist.dat$xv)
),
colour = normal.curve.color,
size = normal.curve.size,
alpha = normal.curve.alpha
)
}
} else {
# Since the density curve shows no absolute numbers (counts) on the
# y-axis, have also the opportunity to plot "real" histrograms with
# counts on the y-axis
if (type == "histogram") {
# original data needed for normal curve
baseplot <- ggplot(mydat) +
# second data frame mapped to the histogram geom
geom_histogram(data = hist.dat, aes(x = .data$xv), binwidth = geom.size, fill = geom.colors)
} else {
baseplot <- ggplot(mydat, aes(x = .data$val, y = .data$frq)) +
geom_area(alpha = 0.3) +
geom_line(linewidth = geom.size, colour = geom.colors) +
ggvaluelabels
}
# check whether user wants to overlay the histogram
# with a normal curve
if (normal.curve) {
baseplot <- baseplot +
stat_function(
fun = function(xx, mean, sd, n) {
n * stats::dnorm(x = xx, mean = mean, sd = sd)
},
args = with(mydat, c(
mean = mittelwert,
sd = stddev,
n = length(var.cnt)
)),
colour = normal.curve.color,
size = normal.curve.size,
alpha = normal.curve.alpha
)
}
# if we have a histogram, add mean-lines
if (show.mean) {
baseplot <- baseplot +
# vertical lines indicating the mean
geom_vline(xintercept = mittelwert, linetype = mean.line.type, size = mean.line.size)
# check whether meanvalue should be shown.
if (show.mean.val) {
baseplot <- baseplot +
# use annotation instead of geomtext, because we need mean value only printed once
annotate(
"text",
x = mittelwert,
y = upper_lim,
parse = TRUE,
label = paste(
"italic(bar(x)) == ",
round(mittelwert, 1),
"~~italic(s) == ",
round(stddev, 1)
),
vjust = "top",
hjust = "top"
)
}
# check whether the user wants to plot standard deviation area
if (show.sd) {
baseplot <- baseplot +
# first draw shaded rectangle. these are by default in grey colour with very high transparancy
annotate("rect",
xmin = mittelwert - stddev,
xmax = mittelwert + stddev,
ymin = 0,
ymax = c(upper_lim),
fill = "grey70",
alpha = 0.2) +
# draw border-lines for shaded rectangle
geom_vline(xintercept = mittelwert - stddev,
linetype = 3,
size = mean.line.size,
alpha = 0.7) +
geom_vline(xintercept = mittelwert + stddev,
linetype = 3,
size = mean.line.size,
alpha = 0.7)
}
}
# show absolute and percentage value of each bar.
baseplot <- baseplot + yscale +
# continuous x-scale for histograms
scale_x_continuous(limits = xlim, expand = expand.grid, breaks = histgridbreaks)
}
# set axes text and
baseplot <- baseplot + labs(title = title, x = axis.title, y = NULL)
# Check whether ggplot object should be returned or plotted
baseplot
}
|