File: plot_grpfrq.R

package info (click to toggle)
r-cran-sjplot 2.8.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,596 kB
  • sloc: sh: 13; makefile: 2
file content (886 lines) | stat: -rw-r--r-- 35,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
#' @title Plot grouped or stacked frequencies
#' @name plot_grpfrq
#'
#' @description Plot grouped or stacked frequencies of variables as bar/dot,
#'                box or violin plots, or line plot.
#'
#' @param var.cnt Vector of counts, for which frequencies or means will be plotted or printed.
#' @param var.grp Factor with the cross-classifying variable, where \code{var.cnt}
#'          is grouped into the categories represented by \code{var.grp}.
#' @param weight.by Vector of weights that will be applied to weight all cases.
#'          Must be a vector of same length as the input vector. Default is
#'          \code{NULL}, so no weights are used.
#' @param title.wtd.suffix Suffix (as string) for the title, if \code{weight.by} is specified,
#'          e.g. \code{title.wtd.suffix=" (weighted)"}. Default is \code{NULL}, so
#'          title will not have a suffix when cases are weighted.
#' @param intr.var An interaction variable which can be used for box plots. Divides each category indicated
#'          by \code{var.grp} into the factors of \code{intr.var}, so that each category of \code{var.grp}
#'          is subgrouped into \code{intr.var}'s categories. Only applies when
#'          \code{type = "boxplot"} or \code{type = "violin"}.
#' @param bar.pos Indicates whether bars should be positioned side-by-side (default),
#'          or stacked (\code{bar.pos = "stack"}). May be abbreviated.
#' @param type Specifies the plot type. May be abbreviated.
#'          \describe{
#'            \item{\code{"bar"}}{for simple bars (default)}
#'            \item{\code{"dot"}}{for a dot plot}
#'            \item{\code{"histogram"}}{for a histogram (does not apply to grouped frequencies)}
#'            \item{\code{"line"}}{for a line-styled histogram with filled area}
#'            \item{\code{"density"}}{for a density plot (does not apply to grouped frequencies)}
#'            \item{\code{"boxplot"}}{for box plot}
#'            \item{\code{"violin"}}{for violin plots}
#'            }
#' @param show.legend logical, if \code{TRUE}, and depending on plot type and
#'          function, a legend is added to the plot.
#' @param ylim numeric vector of length two, defining lower and upper axis limits
#'          of the y scale. By default, this argument is set to \code{NULL}, i.e. the
#'          y-axis fits to the required range of the data.
#' @param facet.grid \code{TRUE} to arrange the lay out of of multiple plots
#'          in a grid of an integrated single plot. This argument calls
#'          \code{\link[ggplot2]{facet_wrap}} or \code{\link[ggplot2]{facet_grid}}
#'          to arrange plots. Use \code{\link{plot_grid}} to plot multiple plot-objects
#'          as an arranged grid with \code{\link[gridExtra]{grid.arrange}}.
#' @param title character vector, used as plot title. Depending on plot type and function,
#'          will be set automatically. If \code{title = ""}, no title is printed.
#'          For effect-plots, may also be a character vector of length > 1,
#'          to define titles for each sub-plot or facet.
#' @param legend.title character vector, used as title for the plot legend.
#' @param axis.labels character vector with labels used as axis labels. Optional
#'          argument, since in most cases, axis labels are set automatically.
#' @param intr.var.labels a character vector with labels for the x-axis breaks
#'          when having interaction variables included.
#'          These labels replace the \code{axis.labels}. Only applies, when using box or violin plots
#'          (i.e. \code{type = "boxplot"} or \code{"violin"}) and \code{intr.var} is not \code{NULL}.
#' @param legend.labels character vector with labels for the guide/legend.
#' @param wrap.title numeric, determines how many chars of the plot title are displayed in
#'          one line and when a line break is inserted.
#' @param wrap.labels numeric, determines how many chars of the value, variable or axis
#'          labels are displayed in one line and when a line break is inserted.
#' @param wrap.legend.title numeric, determines how many chars of the legend's title
#'          are displayed in one line and when a line break is inserted.
#' @param wrap.legend.labels numeric, determines how many chars of the legend labels are
#'          displayed in one line and when a line break is inserted.
#' @param grid.breaks numeric; sets the distance between breaks for the axis,
#'          i.e. at every \code{grid.breaks}'th position a major grid is being printed.
#' @param inner.box.width width of the inner box plot that is plotted inside of violin plots. Only applies
#'          if \code{type = "violin"}. Default value is 0.15
#' @param inner.box.dotsize size of mean dot insie a violin or box plot. Applies only
#'          when \code{type = "violin"} or \code{"boxplot"}.
#' @param geom.colors user defined color for geoms. See 'Details' in \code{\link{plot_grpfrq}}.
#' @param geom.size size resp. width of the geoms (bar width, line thickness or point size,
#'          depending on plot type and function). Note that bar and bin widths mostly
#'          need smaller values than dot sizes.
#' @param geom.spacing the spacing between geoms (i.e. bar spacing)
#' @param smooth.lines prints a smooth line curve. Only applies, when argument \code{type = "line"}.
#' @param expand.grid logical, if \code{TRUE}, the plot grid is expanded, i.e. there is a small margin between
#'          axes and plotting region. Default is \code{FALSE}.
#' @param show.values Logical, whether values should be plotted or not.
#' @param show.n logical, if \code{TRUE}, adds total number of cases for each
#'          group or category to the labels.
#' @param show.axis.values logical, whether category, count or percentage values for the axis
#'          should be printed or not.
#' @param show.prc logical, if \code{TRUE} (default), percentage values are plotted to each bar
#'          If \code{FALSE}, percentage values are removed.
#' @param show.ci Logical, if \code{TRUE)}, adds notches to the box plot, which are
#'          used to compare groups; if the notches of two boxes do not overlap,
#'          medians are considered to be significantly different.
#' @param emph.dots logical, if \code{TRUE}, the groups of dots in a dot-plot are highlighted
#'          with a shaded rectangle.
#' @param show.summary logical, if \code{TRUE} (default), a summary with chi-squared
#'          statistics (see \code{\link{chisq.test}}), Cramer's V or Phi-value etc.
#'          is shown. If a cell contains expected values lower than five (or lower than 10
#'          if df is 1), the Fisher's exact test (see \code{\link{fisher.test}}) is
#'          computed instead of chi-squared test. If the table's matrix is larger
#'          than 2x2, Fisher's exact test with Monte Carlo simulation is computed.
#' @param show.grpcnt logical, if \code{TRUE}, the count within each group is added
#'          to the category labels (e.g. \code{"Cat 1 (n=87)"}). Default value is \code{FALSE}.
#' @param summary.pos position of the model summary which is printed when \code{show.summary}
#'          is \code{TRUE}. Default is \code{"r"}, i.e. it's printed to the upper right corner.
#'          Use \code{"l"} for upper left corner.
#' @param axis.titles character vector of length one or two, defining the title(s)
#'          for the x-axis and y-axis.
#' @param drop.empty Logical, if \code{TRUE} and the variable's values are labeled, values / factor
#'          levels with no occurrence in the data are omitted from the output. If \code{FALSE},
#'          labeled values that have no observations are still printed in the table (with frequency \code{0}).
#' @param auto.group numeric value, indicating the minimum amount of unique values
#'          in the count variable, at which automatic grouping into smaller units
#'          is done (see \code{\link[sjmisc]{group_var}}). Default value for
#'          \code{auto.group} is \code{NULL}, i.e. auto-grouping is off.
#'          See \code{\link[sjmisc]{group_var}} for examples on grouping.
#' @param coord.flip logical, if \code{TRUE}, the x and y axis are swapped.
#' @param vjust character vector, indicating the vertical position of value
#'          labels. Allowed are same values as for \code{vjust} aesthetics from
#'          \code{ggplot2}: "left", "center", "right", "bottom", "middle", "top" and
#'          new options like "inward" and "outward", which align text towards and
#'          away from the center of the plot respectively.
#' @param hjust character vector, indicating the horizontal position of value
#'          labels. Allowed are same values as for \code{vjust} aesthetics from
#'          \code{ggplot2}: "left", "center", "right", "bottom", "middle", "top" and
#'          new options like "inward" and "outward", which align text towards and
#'          away from the center of the plot respectively.
#' @param y.offset numeric, offset for text labels when their alignment is adjusted
#'          to the top/bottom of the geom (see \code{hjust} and \code{vjust}).
#' @param show.na logical, if \code{TRUE}, \code{\link{NA}}'s (missing values)
#'          are added to the output.
#'
#' @return A ggplot-object.
#'
#' @details \code{geom.colors} may be a character vector of color values
#'          in hex-format, valid color value names (see \code{demo("colors")} or
#'          a name of a \href{ https://colorbrewer2.org/}{color brewer} palette.
#'          Following options are valid for the \code{geom.colors} argument:
#'          \itemize{
#'            \item If not specified, a default color brewer palette will be used, which is suitable for the plot style (i.e. diverging for likert scales, qualitative for grouped bars etc.).
#'            \item If \code{"gs"}, a greyscale will be used.
#'            \item If \code{"bw"}, and plot-type is a line-plot, the plot is black/white and uses different line types to distinguish groups (see \href{https://strengejacke.github.io/sjPlot/articles/blackwhitefigures.html}{this package-vignette}).
#'            \item If \code{geom.colors} is any valid color brewer palette name, the related palette will be used. Use \code{RColorBrewer::display.brewer.all()} to view all available palette names.
#'            \item Else specify own color values or names as vector (e.g. \code{geom.colors = c("#f00000", "#00ff00")}).
#'          }
#'
#' @examples
#' data(efc)
#' plot_grpfrq(efc$e17age, efc$e16sex, show.values = FALSE)
#'
#' # boxplot
#' plot_grpfrq(efc$e17age, efc$e42dep, type = "box")
#'
#' # grouped bars
#' plot_grpfrq(efc$e42dep, efc$e16sex, title = NULL)
#'
#' # box plots with interaction variable
#' plot_grpfrq(efc$e17age, efc$e42dep, intr.var = efc$e16sex, type = "box")
#'
#' # Grouped bar plot
#' plot_grpfrq(efc$neg_c_7, efc$e42dep, show.values = FALSE)
#'
#' # same data as line plot
#' plot_grpfrq(efc$neg_c_7, efc$e42dep, type = "line")
#'
#' # show ony categories where we have data (i.e. drop zero-counts)
#' library(dplyr)
#' efc <- dplyr::filter(efc, e42dep %in% c(3,4))
#' plot_grpfrq(efc$c161sex, efc$e42dep, drop.empty = TRUE)
#'
#' # show all categories, even if not in data
#' plot_grpfrq(efc$c161sex, efc$e42dep, drop.empty = FALSE)
#'
#' @import ggplot2
#' @importFrom rlang .data
#' @export
plot_grpfrq <- function(var.cnt,
                       var.grp,
                       type = c("bar", "dot", "line", "boxplot", "violin"),
                       bar.pos = c("dodge", "stack"),
                       weight.by = NULL,
                       intr.var = NULL,
                       title = "",
                       title.wtd.suffix = NULL,
                       legend.title = NULL,
                       axis.titles = NULL,
                       axis.labels = NULL,
                       legend.labels = NULL,
                       intr.var.labels = NULL,
                       wrap.title = 50,
                       wrap.labels = 15,
                       wrap.legend.title = 20,
                       wrap.legend.labels = 20,
                       geom.size = NULL,
                       geom.spacing = 0.15,
                       geom.colors = "Paired",
                       show.values = TRUE,
                       show.n = TRUE,
                       show.prc = TRUE,
                       show.axis.values = TRUE,
                       show.ci = FALSE,
                       show.grpcnt = FALSE,
                       show.legend = TRUE,
                       show.na = FALSE,
                       show.summary = FALSE,
                       drop.empty = TRUE,
                       auto.group = NULL,
                       ylim = NULL,
                       grid.breaks = NULL,
                       expand.grid = FALSE,
                       inner.box.width = 0.15,
                       inner.box.dotsize = 3,
                       smooth.lines = FALSE,
                       emph.dots = TRUE,
                       summary.pos = "r",
                       facet.grid = FALSE,
                       coord.flip = FALSE,
                       y.offset = NULL,
                       vjust = "bottom",
                       hjust = "center") {

  # get variable names
  var.name.cnt <- get_var_name(deparse(substitute(var.cnt)))
  var.name.grp <- get_var_name(deparse(substitute(var.grp)))

  # remove empty value-labels
  if (drop.empty) {
    var.cnt <- sjlabelled::drop_labels(var.cnt)
    var.grp <- sjlabelled::drop_labels(var.grp)
  }

  # copy titles
  if (is.null(axis.titles)) {
    axisTitle.x <- NULL
    axisTitle.y <- NULL
  } else {
    axisTitle.x <- axis.titles[1]
    if (length(axis.titles) > 1)
      axisTitle.y <- axis.titles[2]
    else
      axisTitle.y <- NULL
  }

  # match arguments
  type <- match.arg(type)
  bar.pos <- match.arg(bar.pos)

  # turn off legend by default for facet grids
  if (facet.grid && missing(show.legend)) show.legend <- FALSE

  # Plot margins
  if (expand.grid)
    expand.grid <- waiver()
  else
    expand.grid <- c(0, 0)

  # check default geom.size
  if (is.null(geom.size)) {
    geom.size <- dplyr::case_when(
      type == "bar" ~ .7,
      type == "dot" ~ 3,
      type == "line" ~ .8,
      type == "boxplot" ~ .5,
      type == "violin" ~ .6,
      TRUE ~ .7
    )
  }

  # set text label offset
  if (is.null(y.offset)) {
    # get maximum y-pos
    y.offset <- ceiling(max(table(var.cnt, var.grp)) / 100)

    if (coord.flip) {
      if (missing(vjust)) vjust <- "center"
      if (missing(hjust)) hjust <- "bottom"

      # for flipped coordinates, we need to adjust
      # y-offset according to horizontal adjustemnt of labels
      if (hjust == "bottom")
        y_offset <- y.offset
      else if (hjust == "top")
        y_offset <- -y.offset
      else
        y_offset <- 0
    } else {
      # for non-flipped coordinates, we need to adjust
      # y-offset according to vertical adjustemnt of labels
      if (vjust == "bottom")
        y_offset <- y.offset
      else if (vjust == "top")
        y_offset <- -y.offset
      else
        y_offset <- 0
    }
  } else {
    y_offset <- y.offset
  }

  # Interaction variable defined for invalid plot type?
  if (!is.null(intr.var) && type != "boxplot" && type != "violin") {
    message("`intr.var` only applies to boxplots and violinplots (see `type`) and will be ignored.")
  }

  if (show.grpcnt && type %in% c("boxplot", "violin")) {
    message("`show.grpcnt` does not apply to boxplots and violinplots and will be ignored.")
    show.grpcnt <- FALSE
  }

  # auto-set plot title for box plots?
  if (missing(title) && (type == "boxplot" || type == "violin")) title <- NULL

  # check whether variable should be auto-grouped
  if (!is.null(auto.group) && length(unique(var.cnt)) >= auto.group) {
    message(sprintf(
      "%s has %i unique values and was grouped...",
      var.name.cnt,
      length(unique(var.cnt))
    ))

    # check for default auto-group-size or user-defined groups
    agcnt <- ifelse(auto.group < 30, auto.group, 30)

    # group axis labels
    axis.labels <-
      sjmisc::group_labels(
        sjmisc::to_value(var.cnt, keep.labels = F),
        size = "auto",
        n = agcnt
      )

    # group variable
    grp.var.cnt <-
      sjmisc::group_var(
        sjmisc::to_value(var.cnt, keep.labels = F),
        size = "auto",
        as.num = TRUE,
        n = agcnt,
        append = FALSE
      )

    # set value labels
    grp.var.cnt <- sjlabelled::set_labels(grp.var.cnt, labels = axis.labels)
  } else {
    grp.var.cnt <- var.cnt
  }

  # create cross table of frequencies and percentages
  mydat <-
    create.xtab.df(
      grp.var.cnt,
      var.grp,
      round.prz = 2,
      na.rm = !show.na,
      weight.by = weight.by
    )

  # x-position as numeric factor, added later after
  # tidying
  bars.xpos <- seq_len(nrow(mydat$mydat))

  # try to automatically set labels if not passed as argument
  if (missing(axis.labels) && (type == "boxplot" || type == "violin")) {
    axis.labels <- mydat$labels.grp
    # if we have interaction variable, legend should be shown by default,
    # unless explicitely set to FALSE
    if (missing(show.legend)) show.legend <- !is.null(intr.var)
  }

  if (is.null(axis.labels)) axis.labels <- mydat$labels.cnt

  # we need to know later whether user has supplied legend labels or not
  we_have_legend_labels <- FALSE

  # check for auto-getting labels, ot if user passed legend labels as argument
  if (is.null(legend.labels))
    legend.labels <- mydat$labels.grp
  else
    we_have_legend_labels <- TRUE

  # go to interaction terms. in this case, due to interaction, the axis
  # labels become legend labels, but only if user has not specified
  # legend labels yet. In the latter case, leave legend labels unchanged.
  if (is.null(intr.var.labels) && !is.null(intr.var)) {
    intr.var.labels <- sjlabelled::get_labels(
      intr.var,
      attr.only = F,
      values = F,
      non.labelled = T
    )

    # create repeating label for x-axis
    intr.var.labels <- rep(intr.var.labels, length.out = length(axis.labels) * length(intr.var.labels))

    # we need a legend, cause x axis is labelled with interaction var value
    show.legend <- TRUE

    # has user specified legend labels before?
    if (!we_have_legend_labels) legend.labels <- axis.labels
  }

  if (is.null(axisTitle.x)) axisTitle.x <- sjlabelled::get_label(var.cnt, def.value = var.name.cnt)
  if (is.null(legend.title)) legend.title <- sjlabelled::get_label(var.grp, def.value = var.name.grp)

  if (is.null(title)) {
    t1 <- sjlabelled::get_label(var.cnt, def.value = var.name.cnt)
    t2 <- sjlabelled::get_label(var.grp, def.value = var.name.grp)
    if (!is.null(t1) && !is.null(t2)) title <- paste0(t1, " by ", t2)
  }

  # remove titles if empty
  if (!is.null(legend.title) && legend.title == "") legend.title <- NULL
  if (!is.null(axisTitle.x) && axisTitle.x == "") axisTitle.x <- NULL
  if (!is.null(axisTitle.y) && axisTitle.y == "") axisTitle.y <- NULL
  if (!is.null(title) && title == "") title <- NULL

  # variables may not be factors
  if (anyNA(as.numeric(stats::na.omit(var.cnt))))
    var.cnt <- sjmisc::to_value(var.cnt, keep.labels = F)
  else
    var.cnt <- as.numeric(var.cnt)

  if (anyNA(as.numeric(stats::na.omit(var.grp))))
    var.grp <- sjmisc::to_value(var.grp, keep.labels = F)
  else
    var.grp <- as.numeric(var.grp)

  # Define amount of categories
  grpcount <- length(legend.labels)

  # create cross table for stats, summary etc.
  # and weight variable
  colrange <- 2:(grpcount + 1)
  mydf <-
    tidyr::gather(mydat$mydat, key = "group", value = "frq", !! colrange, factor_key = TRUE)

  # add xpos now
  mydf$xpos <- as.factor(as.numeric(bars.xpos))

  # add half of Percentage values as new y-position for stacked bars
  # mydat <- ddply(mydat, "count", transform, ypos = cumsum(frq) - 0.5*frq)
  mydf <- mydf %>%
    dplyr::group_by(.data$label) %>%
    dplyr::mutate(ypos = cumsum(.data$frq) - 0.5 * .data$frq) %>%
    dplyr::arrange(.data$label)

  # add percentages
  mydf$prz <- round(100 * mydf$frq / sum(mydf$frq), 2)

  # If we have boxplots, use different data frame structure
  if (type == "boxplot" || type == "violin") {
    # weight variable
    w <- ifelse(is.null(weight.by), 1, weight.by)

    # interaction variable
    if (is.null(intr.var))
      iav <- 1
    else
      iav <- intr.var

    # new data frame for box plots
    mydf <-
      stats::na.omit(data_frame(cbind(
        group = var.grp,
        frq = var.cnt,
        ia = iav,
        wb = w
      )))

    if (!is.null(axis.labels) &&
        length(axis.labels) > dplyr::n_distinct(mydf$group, na.rm = TRUE)) {
      axis.labels <- axis.labels[na.omit(unique(mydf$group))]
    }

    mydf$ia <- as.factor(mydf$ia)
    mydf$group <- as.factor(mydf$group)
  }

  # create expression with model summarys. used
  # for plotting in the diagram later
  mannwhitneyu <- function(count, grp) {
    if (min(grp, na.rm = TRUE) == 0) grp <- grp + 1
    completeString <- ""
    cnt <- length(unique(stats::na.omit(grp)))
    for (i in 1:cnt) {
      for (j in i:cnt) {
        if (i != j) {
          xsub <- count[which(grp == i | grp == j)]
          ysub <- grp[which(grp == i | grp == j)]
          ysub <- ysub[which(!is.na(xsub))]
          xsub <- as.numeric(stats::na.omit(xsub))
          ysub <- as.numeric(stats::na.omit(ysub))
          wt <- stats::wilcox.test(xsub ~ ysub)

          if (wt$p.value < 0.001) {
            modsum <- as.character(as.expression(substitute(
              p[pgrp] < pval, list(pgrp = sprintf("(%i|%i)", i, j), pval = 0.001)
            )))
          } else {
            modsum <- as.character(as.expression(substitute(
              p[pgrp] == pval,
              list(pgrp = sprintf("(%i|%i)", i, j),
                   pval = sprintf("%.3f", wt$p.value)))))
          }
          completeString <- sprintf("%s * \",\" ~ ~ %s",
                                    completeString,
                                    modsum)
        }
      }
    }
    return(paste("\"Mann-Whitney-U:\" ~ ~ ",
                 substring(completeString, 12),
                 sep = ""))
  }

  # Check whether table summary should be printed
  modsum <- NULL
  if (show.summary) {
    if (type == "boxplot" || type == "violin")
      modsum <- mannwhitneyu(var.cnt, var.grp)
    else
      modsum <- crosstabsum(var.cnt, var.grp, weight.by)
  }

  # Prepare and trim legend labels to appropriate size
  if (!is.null(legend.labels))
    legend.labels <- sjmisc::word_wrap(legend.labels, wrap.legend.labels)

  if (!is.null(legend.title))
    legend.title <- sjmisc::word_wrap(legend.title, wrap.legend.title)

  if (!is.null(title)) {
    # if we have weighted values, say that in diagram's title
    if (!is.null(title.wtd.suffix))
      title <- paste(title, title.wtd.suffix, sep = "")
    title <- sjmisc::word_wrap(title, wrap.title)
  }

  if (!is.null(axisTitle.x))
    axisTitle.x <- sjmisc::word_wrap(axisTitle.x, wrap.title)

  if (!is.null(axisTitle.y))
    axisTitle.y <- sjmisc::word_wrap(axisTitle.y, wrap.title)

  if (!is.null(axis.labels))
    axis.labels <- sjmisc::word_wrap(axis.labels, wrap.labels)

  if (!is.null(intr.var)) {
    if (!is.null(intr.var.labels)) {
      intr.var.labels <- sjmisc::word_wrap(intr.var.labels, wrap.labels)
    }
    # If interaction-variable-labels were not defined, simply set numbers from 1 to
    # amount of categories instead
    else {
      iavarLabLength <- length(unique(stats::na.omit(intr.var)))
      intr.var.labels <- 1:iavarLabLength
    }
  }

  # add group counts to category labels
  if (show.grpcnt) {
    nas <- ifelse(isTRUE(show.na), "ifany", "no")
    # check whether we have interaction variables or not
    if (!is.null(intr.var.labels)) {
      # retrieve group counts by converting data column
      # into table
      if (is.null(weight.by)) {
        gc <- table(var.grp, intr.var, useNA = nas)
      } else {
        gc <- table(sjstats::weight2(var.grp, weight.by), intr.var, useNA = nas)
      }
      # determinte loop-steps
      lst <- length(intr.var.labels)
      # iterate category labels
      for (i in seq_len(lst)) {
        # remember original label
        ial <- intr.var.labels[i]
        # add group count to each cat. label
        intr.var.labels[i] <- paste(ial, " (n=", gc[1, i], ")", sep = "")
        intr.var.labels[i + lst] <- paste(ial, " (n=", gc[2, i], ")", sep = "")
      }
    } else {
      sums <- unname(rowSums(mydat$mydat[, -1]))
      # add group count to each cat. label
      axis.labels <- paste(axis.labels, " (n=", sums, ")", sep = "")
      sums <- unname(colSums(mydat$mydat[, -1]))
      # add group count to each cat. label
      legend.labels <- paste(legend.labels, " (n=", sums, ")", sep = "")
    }
  }

  # Prepare bar charts
  trimViolin <- FALSE
  lower_lim <- 0

  # calculate upper y-axis-range
  # if we have a fixed value, use this one here
  if (!is.null(ylim) && length(ylim) == 2) {
    lower_lim <- ylim[1]
    upper_lim <- ylim[2]
  } else {
    # if we have boxplots, we have different ranges, so we can adjust
    # the y axis
    if (type == "boxplot" || type == "violin") {
      # use an extra standard-deviation as limits for the y-axis when we have boxplots
      lower_lim <- min(var.cnt, na.rm = TRUE) - floor(stats::sd(var.cnt, na.rm = TRUE))
      upper_lim <- max(var.cnt, na.rm = TRUE) + ceiling(stats::sd(var.cnt, na.rm = TRUE))
      # make sure that the y-axis is not below zero
      if (lower_lim < 0) {
        lower_lim <- 0
        trimViolin <- TRUE
      }
      # else calculate upper y-axis-range depending
      # on the amount of cases...
    } else if (bar.pos == "stack") {
      upper_lim <- max(pretty(table(grp.var.cnt) * 1.05))
    } else {
      # ... or the amount of max. answers per category
      upper_lim <- max(pretty(table(grp.var.cnt, var.grp) * 1.05))
    }
  }

  # align dodged position of labels to bar positions
  if (type == "line")
    posdodge <- 0
  else if (type == "dot")
    posdodge <- geom.spacing
  else
    posdodge <- geom.size + geom.spacing

  # init shaded rectangles for plot
  ganno <- NULL

  # check whether we have dots or bars
  if (type == "dot") {
    # position_dodge displays dots in a dodged position so we avoid overlay here. This may lead
    # to a more difficult distinction of group belongings, since the dots are "horizontally spread"
    # over the digram. For a better overview, we can add a "PlotAnnotation" (see "emph.dots) here.
    geob <- geom_point(position = position_dodge(posdodge),size = geom.size, shape = 16)

    # create shaded rectangle, so we know which dots belong to the same category
    if (emph.dots) {
      ganno <- annotate(
        "rect",
        xmin = as.numeric(mydf$xpos) - 0.4,
        xmax = as.numeric(mydf$xpos) + 0.4,
        ymin = lower_lim,
        ymax = upper_lim,
        fill = "grey80",
        alpha = 0.1
      )
    }
  } else if (type == "bar") {
    if (bar.pos == "dodge")
      geob <- geom_bar(stat = "identity", width = geom.size, position = position_dodge(posdodge))
    else
      geob <- geom_bar(stat = "identity", width = geom.size, position = position_stack(reverse = TRUE))
  } else if (type == "line") {
    if (smooth.lines)
      geob <- geom_line(linewidth = geom.size, stat = "smooth", method = "loess")
    else
      geob <- geom_line(linewidth = geom.size)
  } else if (type == "boxplot") {
      geob <- geom_boxplot(width = geom.size, notch = show.ci)
  } else if (type == "violin") {
    geob <- geom_violin(trim = trimViolin, width = geom.size)
  } else {
    geob <- geom_bar(stat = "identity", position = bar.pos, width = geom.size)
  }

  # don't display value labels when we have boxplots or violin plots
  if (type == "boxplot" || type == "violin") show.values <- FALSE

  if (show.values) {
    # set text positioning
    if (facet.grid)
      text.pos <- "identity"
    else
      text.pos <- position_dodge(posdodge)

    # if we have stacked bars, we need to apply
    # this stacked y-position to the labels as well
    if (bar.pos == "stack") {
      if (show.prc && show.n) {
        ggvaluelabels <-
          geom_text(aes(y = .data$ypos, label = sprintf("%i\n(%.01f%%)", .data$frq, .data$prz)), show.legend = FALSE)
      } else if (show.n) {
        ggvaluelabels <-
          geom_text(aes(y = .data$ypos, label = sprintf("%i", .data$frq)), show.legend = FALSE)
      } else if (show.prc) {
        ggvaluelabels <-
          geom_text(aes(y = .data$ypos, label = sprintf("%.01f%%", .data$prz)), show.legend = FALSE)
      } else {
        ggvaluelabels <- geom_text(aes(y = .data$frq), label = "", show.legend = FALSE)
      }
    } else {
      # if we have dodged bars or dots, we have to use a slightly
      # dodged position for labels
      # as well, sofor better reading
      if (show.prc && show.n) {
        if (coord.flip) {
          ggvaluelabels <-
            geom_text(
              aes(y = .data$frq + y_offset, label = sprintf("%i (%.01f%%)", .data$frq, .data$prz)),
              position = text.pos,
              vjust = vjust,
              hjust = hjust,
              show.legend = FALSE
            )
        } else {
          ggvaluelabels <-
            geom_text(
              aes(y = .data$frq + y_offset, label = sprintf("%i\n(%.01f%%)", .data$frq, .data$prz)),
              position = text.pos,
              vjust = vjust,
              hjust = hjust,
              show.legend = FALSE
            )
        }
      } else if (show.n) {
        ggvaluelabels <-
          geom_text(
            aes(y = .data$frq + y_offset, label = sprintf("%i", .data$frq)),
            position = text.pos,
            hjust = hjust,
            vjust = vjust,
            show.legend = FALSE
          )
      } else if (show.prc) {
        ggvaluelabels <-
          geom_text(
            aes(y = .data$frq + y_offset, label = sprintf("%.01f%%", .data$prz)),
            position = text.pos,
            hjust = hjust,
            vjust = vjust,
            show.legend = FALSE
          )
      } else {
        ggvaluelabels <- geom_text(aes(y = .data$frq), label = "", show.legend = FALSE)
      }
    }
  } else {
    ggvaluelabels <- geom_text(aes(y = .data$frq), label = "", show.legend = FALSE)
  }

  # Set up grid breaks
  if (is.null(grid.breaks))
    gridbreaks <- waiver()
  else
    gridbreaks <- seq(lower_lim, upper_lim, by = grid.breaks)

  # Print plot
  if (type == "line") {
    # line plot need numeric x-scale
    mydf$xpos <- sjmisc::to_value(mydf$xpos, keep.labels = FALSE)

    # lines need colour aes
    baseplot <-
      ggplot(mydf,
             aes_string(
               x = "xpos",
               y = "frq",
               colour = "group",
               linetype = "group"
             )) + geob

    # continuous scale for lines needed
    scalex <- scale_x_continuous()
  } else if (type == "boxplot" || type == "violin") {
    if (is.null(intr.var)) {
      baseplot <-
        ggplot(mydf,
               aes_string(
                 x = "group",
                 y = "frq",
                 fill = "group",
                 weight = "wb"
               )) + geob
      scalex <- scale_x_discrete(labels = axis.labels)
    } else {
      baseplot <-
        ggplot(mydf, aes(
          x = interaction(.data$ia, .data$group),
          y = .data$frq,
          fill = .data$group,
          weight = .data$wb
        )) + geob
      scalex <- scale_x_discrete(labels = intr.var.labels)
    }

    # if we have a violin plot, add an additional boxplot inside to show
    # more information
    if (type == "violin") {
      if (show.ci) {
        baseplot <- baseplot +
          geom_boxplot(width = inner.box.width, fill = "white", outlier.colour = NA, notch = TRUE)
      } else {
        baseplot <- baseplot +
          geom_boxplot(width = inner.box.width, fill = "white", outlier.colour = NA)
      }
    }

    # if we have boxplots or violon plots, also add a point that indicates
    # the mean value
    # different fill colours, because violin boxplots have white background
    fcsp <- ifelse(type == "boxplot", "white", "black")
    baseplot <- baseplot +
      stat_summary(fun = "mean", geom = "point", shape = 21,
                   size = inner.box.dotsize, fill = fcsp)
  } else {
    if (type == "dot") {
      baseplot <- ggplot(mydf, aes_string(x = "xpos", y = "frq", colour = "group"))

      # check whether we have dots plotted, and if so, use annotation
      # We have to use annotation first, because the diagram's layers are plotted
      # in the order as they're passed to the ggplot-command. Since we don't want the
      # shaded rectangles to overlay the dots, we add them first
      if (!is.null(ganno) && !facet.grid) baseplot <- baseplot + ganno
    } else {
      baseplot <- ggplot(mydf, aes_string(x = "xpos", y = "frq", fill = "group"))
    }

    # add geom
    baseplot <- baseplot + geob

    # define x axis
    scalex <- scale_x_discrete(labels = axis.labels)
  }

  # If we have bars or dot plots, we show
  # Pearson's chi-square test results
  baseplot <- .print.table.summary(baseplot, modsum, summary.pos)

  # prepare y-axis and
  # show or hide y-axis-labels
  if (show.axis.values) {
    y_scale <- scale_y_continuous(
      breaks = gridbreaks,
      limits = c(lower_lim, upper_lim),
      expand = expand.grid
    )
  } else {
    y_scale <- scale_y_continuous(
      breaks = gridbreaks,
      limits = c(lower_lim, upper_lim),
      expand = expand.grid,
      labels = NULL
    )
  }

  # continue with plot objects...
  baseplot <- baseplot +
    # show absolute and percentage values for each bar
    ggvaluelabels +
    # add labels to x- and y-axis, and diagram title
    labs(
      title = title,
      x = axisTitle.x,
      y = axisTitle.y,
      fill = legend.title,
      colour = legend.title
    ) +
    # print value labels to the x-axis.
    # If argument "axis.labels" is NULL, the category numbers (1 to ...)
    # appear on the x-axis
    scalex +
    # set Y-axis, depending on the calculated upper y-range.
    # It either corresponds to the maximum amount of cases in the data set
    # (length of var) or to the highest count of var's categories.
    y_scale

  # check whether coordinates should be flipped
  if (coord.flip) baseplot <- baseplot + coord_flip()

  # Here we start when we have a faces grid instead of
  # a grouped bar plot.
  if (facet.grid) {
    baseplot <- baseplot +
      # set font size for axes.
      # theme(strip.text = element_text(face = "bold", size = rel(1.1))) +
      facet_wrap(~group, scales = "free")
  }

  # set geom colors
  baseplot <-
    sj.setGeomColors(baseplot,
                     geom.colors,
                     length(legend.labels),
                     show.legend,
                     legend.labels)

  # Plot integrated bar chart here
  baseplot
}