File: plot_likert.R

package info (click to toggle)
r-cran-sjplot 2.8.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,596 kB
  • sloc: sh: 13; makefile: 2
file content (835 lines) | stat: -rw-r--r-- 31,376 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
#' @title Plot likert scales as centered stacked bars
#' @name plot_likert
#'
#' @description Plot likert scales as centered stacked bars.
#'
#' @note Note that only even numbers of categories are possible to plot, so the "positive"
#'        and "negative" values can be splitted into two halfs. A neutral category (like "don't know")
#'        can be used, but must be indicated by \code{cat.neutral}. \cr \cr
#'        The \code{catcount}-argument indicates how many item categories are in the
#'        Likert scale. Normally, this argument can be ignored because the amount of
#'        valid categories is retrieved automatically. However, sometimes (for instance,
#'        if a certain category is missing in all items), auto-detection of the amount
#'        of categories fails. In such cases, specify the amount of categories
#'        with the \code{catcount}-argument.
#'
#' @param catcount optional, amount of categories of \code{items} (e.g. \emph{"strongly disagree",
#'          "disagree", "agree"} and \emph{"strongly agree"} would be \code{catcount = 4}).
#'          Note that this argument only applies to "valid" answers, i.e. if you
#'          have an additional neutral category (see \code{cat.neutral}) like \emph{"don't know"},
#'          this won't count for \code{catcount} (e.g. "strongly disagree",
#'          "disagree", "agree", "strongly agree" and neutral category "don't know"
#'          would still mean that \code{catcount = 4}). See 'Note'.
#' @param cat.neutral If there's a neutral category (like "don't know" etc.), specify
#'          the index number (value) for this category. Else, set \code{cat.neutral = NULL} (default).
#'          The proportions of neutral category answers are plotted as grey bars on the left side of
#'          the figure.
#' @param sort.frq Indicates whether the items of \code{items} should be ordered by
#'          total sum of positive or negative answers.
#'          \describe{
#'            \item{\code{"pos.asc"}}{to order ascending by sum of positive answers}
#'            \item{\code{"pos.desc"}}{to order descending by sum of positive answers}
#'            \item{\code{"neg.asc"}}{for sorting ascending negative answers}
#'            \item{\code{"neg.desc"}}{for sorting descending negative answers}
#'            \item{\code{NULL}}{(default) for no sorting}
#'          }
#' @param reverse.colors logical, if \code{TRUE}, the color scale from \code{geom.colors} will be reversed,
#'          so positive and negative values switch colors.
#' @param cat.neutral.color Color of the neutral category, if plotted (see \code{cat.neutral}).
#' @param intercept.line.color Color of the vertical intercept line that divides positive and negative values.
#' @param values Determines style and position of percentage value labels on the bars:
#'          \describe{
#'            \item{\code{"show"}}{(default) shows percentage value labels in the middle of each category bar}
#'            \item{\code{"hide"}}{hides the value labels, so no percentage values on the bars are printed}
#'            \item{\code{"sum.inside"}}{shows the sums of percentage values for both negative and positive values and prints them inside the end of each bar}
#'            \item{\code{"sum.outside"}}{shows the sums of percentage values for both negative and positive values and prints them outside the end of each bar}
#'          }
#' @param show.prc.sign logical, if \code{TRUE}, \%-signs for value labels are shown.
#' @param grid.range Numeric, limits of the x-axis-range, as proportion of 100.
#'          Default is 1, so the x-scale ranges from zero to 100\% on both sides from the center.
#'          Can alternatively be supplied as a vector of 2 positive numbers (e.g. \code{grid.range = c(1, .8)})
#'          to set the left and right limit separately. You can use values beyond 1 (100\%) in case bar labels are not printed because
#'          they exceed the axis range. E.g. \code{grid.range = 1.4} will set the axis from -140 to +140\%, however, only
#'          (valid) axis labels from -100 to +100\% are printed. Neutral categories are adjusted to the most left limit.
#' @param reverse.scale logical, if \code{TRUE}, the ordering of the categories is reversed, so positive and negative values switch position.
#' @param groups (optional) Must be a vector of same length as \code{ncol(items)},
#'    where each item in this vector represents the group number
#'    of the related columns of \code{items}. See 'Examples'.
#' @param groups.titles (optional, only used if groups are supplied) Titles for each factor group that will be used as table caption for each
#'          component-table. Must be a character vector of same length as \code{length(unique(groups))}.
#'          Default is \code{"auto"}, which means that each table has a standard caption \emph{Component x}.
#'          Use \code{NULL} to use names as supplied to \code{groups} and use \code{FALSE} to suppress table captions.
#' @param sort.groups (optional, only used if groups are supplied) logical, if groups should be sorted according to the values supplied to \code{groups}. Defaults to \code{TRUE}.
#' @param legend.pos (optional, only used if groups are supplied) Defines the legend position. Possible values are \code{c("bottom", "top", "both", "all", "none")}.
#'    If the is only one group or this option is set to \code{"all"} legends will be printed as defined with \code{\link{set_theme}}.
#' @param rel_heights (optional, only used if groups are supplied) This option can be used to adjust the height of the subplots. The bars in subplots can have different heights due to a differing number of items
#'   or due to legend placement. This can be adjusted here. Takes a vector of numbers, one
#'   for each plot. Values are evaluated relative to each other.
#' @param group.legend.options (optional, only used if groups are supplied) List of options to be passed to \code{\link[ggplot2]{guide_legend}}.
#' The most notable options are \code{byrow=T} (default), this will order the categories row wise.
#' And with \code{group.legend.options = list(nrow = 1)} all categories can be forced to be on a single row.
#' @param cowplot.options (optional, only used if groups are supplied) List of label options to be passed to \code{\link[cowplot]{plot_grid}}.
#'
#' @inheritParams plot_grpfrq
#' @inheritParams plot_stackfrq
#' @inheritParams plot_model
#'
#' @return A ggplot-object.
#'
#' @examples
#' if (requireNamespace("ggrepel") && requireNamespace("sjmisc")) {
#' library(sjmisc)
#' data(efc)
#' # find all variables from COPE-Index, which all have a "cop" in their
#' # variable name, and then plot that subset as likert-plot
#' mydf <- find_var(efc, pattern = "cop", out = "df")
#'
#' plot_likert(mydf)
#'
#' plot_likert(
#'   mydf,
#'   grid.range = c(1.2, 1.4),
#'   expand.grid = FALSE,
#'   values = "sum.outside",
#'   show.prc.sign = TRUE
#' )
#'
#' # Plot in groups
#'
#' plot_likert(mydf, c(2,1,1,1,1,2,2,2,1))
#'
#' if (require("parameters") && require("nFactors")) {
#'   groups <- parameters::principal_components(mydf)
#'   plot_likert(mydf, groups = parameters::closest_component(groups))
#' }
#'
#' plot_likert(mydf,
#'             c(rep("B", 4), rep("A", 5)),
#'             sort.groups = FALSE,
#'             grid.range = c(0.9, 1.1),
#'             geom.colors = "RdBu",
#'             rel_heights = c(6, 8),
#'             wrap.labels = 40,
#'             reverse.scale = TRUE)
#'
#' # control legend items
#' six_cat_example = data.frame(
#'   matrix(sample(1:6, 600, replace = TRUE),
#'   ncol = 6)
#' )
#'
#' \dontrun{
#' six_cat_example <-
#'   six_cat_example %>%
#'   dplyr::mutate_all(~ordered(.,labels = c("+++","++","+","-","--","---")))
#'
#' # Old default
#' plot_likert(
#'   six_cat_example,
#'   groups = c(1, 1, 1, 2, 2, 2),
#'   group.legend.options = list(nrow = 2, byrow = FALSE)
#' )
#'
#' # New default
#' plot_likert(six_cat_example, groups = c(1, 1, 1, 2, 2, 2))
#'
#' # Single row
#' plot_likert(
#'   six_cat_example,
#'   groups = c(1, 1, 1, 2, 2, 2),
#'   group.legend.options = list(nrow = 1)
#' )}
#' }
#' @import ggplot2
#' @export
plot_likert <- function(items,
                        groups = NULL,
                        groups.titles = "auto",
                        title = NULL,
                        legend.title = NULL,  # Options to be passed directly to .plot_likert()
                        legend.labels = NULL,
                        axis.titles = NULL,
                        axis.labels = NULL,
                        catcount = NULL,
                        cat.neutral = NULL,
                        sort.frq = NULL,
                        weight.by = NULL,
                        title.wtd.suffix = NULL,
                        wrap.title = 50,
                        wrap.labels = 30,
                        wrap.legend.title = 30,
                        wrap.legend.labels = 28,
                        geom.size = .6,
                        geom.colors = "BrBG",
                        cat.neutral.color = "grey70",
                        intercept.line.color = "grey50",
                        reverse.colors = FALSE,
                        values = "show",
                        show.n = TRUE,
                        show.legend = TRUE,
                        show.prc.sign = FALSE,
                        grid.range = 1,
                        grid.breaks = 0.2,
                        expand.grid = TRUE,
                        digits = 1,
                        reverse.scale = FALSE,
                        coord.flip = TRUE,
                        sort.groups = TRUE, # Group Options
                        legend.pos = "bottom",
                        rel_heights = 1,
                        group.legend.options = list(nrow = NULL, byrow = TRUE), # Add rowwise order of levels and option to force a single rowed legend for 6 or more categories
                        cowplot.options = list(label_x = 0.01, hjust = 0, align = "v") # Fix for label position depending on label length bug in cowplot
                        ) {

  # Select options to be passed to .plot_likert()
  .likert_options <- as.list(environment())[5:32]

  ## If now no groups are supplied only 1 group will be assumed. Check for cowplot is only performed if there are groups supplied.
  if (is.null(groups)) {
    groups <- rep(1, length.out = ncol(items))
  } else {
    if (!requireNamespace("cowplot", quietly = T))
      stop("Package 'cowplot' required for this function wor work. Please install it.", call. = F)
  }

  if (ncol(items) != length(groups))
    stop("Length of groups has to equal the number of items: ncol(items) != length(groups).", call. = F)

  # retrieve unique factor / group index values
  findex <- unique(groups)

  if (sort.groups) findex <- sort(findex)

  # Add empty title to plots, to create space for the group.labels
  if (is.null(title) && length(findex) != 1) title <- rep("", length(findex))

  .plot_list <- list()

  # iterate all sub-plots (groups)
  for (i in seq_along(findex)) {
    index <- which(groups == findex[i])

    .pl <- do.call(".plot_likert", args = c(list(items[, index], title = title[i]), .likert_options))

    # If there are 2 or more groups, the legend will be plotted according to legend.pos.
    if (length(findex) != 1) {
      if (legend.pos %in% c("top", "both") && i == 1)
        .pl <- .pl + theme(legend.position = "top") + guides(fill = do.call(guide_legend, group.legend.options))
      else if (legend.pos %in% c("bottom", "both") && i == length(findex))
        .pl <- .pl + theme(legend.position = "bottom") + guides(fill = do.call(guide_legend, group.legend.options))
      else if (legend.pos != "all")
        .pl <- .pl + theme(legend.position = "none")
    }

    .plot_list[i] <-  list(.pl)
  }

  # Options to turn off or overwrite cowplot group.labels.
  if (.is_false(groups.titles)) {
    groups.titles <- rep("", length(findex))
  } else if (!is.null(groups.titles) && (groups.titles[1] == "auto" || length(groups.titles) != length(findex)) && (is.numeric(groups))) {
    groups.titles <- sprintf("Component %i", seq_along(findex)) # For tab_itemscale compatibility
  } else if (length(groups.titles) != length(findex)) {
    groups.titles <- findex
  }

  # If groups were supplied, combine the subplots with cowplot::plot_grid()
  if (length(findex) == 1) {
    .out <- .plot_list[[1]]
  } else {
    .out <- do.call(get("plot_grid", asNamespace("cowplot")),
                    args = c(
                      list(
                        "plotlist" = .plot_list,
                        "labels" = groups.titles,
                        "rel_heights" = rel_heights,
                        "ncol" = 1
                      ),
                      cowplot.options
                    ))
  }

  .out
}

.plot_likert <- function(items,
                       title = NULL,
                       legend.title = NULL,
                       legend.labels = NULL,
                       axis.titles = NULL,
                       axis.labels = NULL,
                       catcount = NULL,
                       cat.neutral = NULL,
                       sort.frq = NULL,
                       weight.by = NULL,
                       title.wtd.suffix = NULL,
                       wrap.title = 50,
                       wrap.labels = 30,
                       wrap.legend.title = 30,
                       wrap.legend.labels = 28,
                       geom.size = .6,
                       geom.colors = "BrBG",
                       cat.neutral.color = "grey70",
                       intercept.line.color = "grey50",
                       reverse.colors = FALSE,
                       values = "show",
                       show.n = TRUE,
                       show.legend = TRUE,
                       show.prc.sign = FALSE,
                       grid.range = 1,
                       grid.breaks = 0.2,
                       expand.grid = TRUE,
                       digits = 1,
                       reverse.scale = FALSE,
                       coord.flip = TRUE) {

  # check param. if we have a single vector instead of
  # a data frame with several items, convert vector to data frame

  if (!is.data.frame(items) && !is.matrix(items)) items <- as.data.frame(items)

  # if grid.range is supplied as 1 value, it is duplicated for symmetric results. This is for compatibillity with older versions.
  if (length(grid.range) == 1) grid.range <- c(grid.range, grid.range)

  # copy titles

  if (is.null(axis.titles)) {
    axisTitle.x <- NULL
    axisTitle.y <- NULL
  } else {
    axisTitle.x <- axis.titles[1]
    if (length(axis.titles) > 1)
      axisTitle.y <- axis.titles[2]
    else
      axisTitle.y <- NULL
  }


  # check sorting

  if (!is.null(sort.frq)) {
    if (sort.frq == "pos.asc") {
      sort.frq  <- "pos"
      reverseOrder <- FALSE
    }
    if (sort.frq == "pos.desc") {
      sort.frq  <- "pos"
      reverseOrder <- TRUE
    }
    if (sort.frq == "neg.asc") {
      sort.frq  <- "neg"
      reverseOrder <- FALSE
    }
    if (sort.frq == "neg.desc") {
      sort.frq  <- "neg"
      reverseOrder <- TRUE
    }
  } else {
    reverseOrder <- FALSE
  }


  # try to automatically set labels is not passed as argument

  if (is.null(legend.labels)) {
    legend.labels <- sjlabelled::get_labels(
      items[[1]],
      attr.only = F,
      values = NULL,
      non.labelled = T
    )
  }

  if (is.null(axis.labels)) {
    # retrieve variable name attribute
    axis.labels <- unname(sjlabelled::get_label(items, def.value = colnames(items)))
  }


  # unname labels, if necessary, so we have a simple character vector
  if (!is.null(names(axis.labels))) axis.labels <- as.vector(axis.labels)

  if (!is.null(legend.labels)) {
    if (!is.null(names(legend.labels))) legend.labels <- as.vector(legend.labels)
  }


  # determine catcount

  adding <- ifelse(is.null(cat.neutral), 0, 1)

  if (is.null(catcount)) {
    # add new unique item values to catcount, so catcount
    # finally contains all unique values of items

    catcount <- items %>%
      purrr::map(~ stats::na.omit(unique(.x))) %>%
      purrr::flatten_dbl() %>%
      unique() %>%
      sort()

    neutral.between <- FALSE

    # remove neutral category
    if (!is.null(cat.neutral)) {
      # find neutral cat value in catcount
      ncv_pos <- which(catcount == cat.neutral)
      # if not empty, remove
      if (!sjmisc::is_empty(ncv_pos)) {
        catcount <- catcount[-ncv_pos]
        neutral.between <- dplyr::between(cat.neutral, min(catcount), max(catcount))
      }
    }

    # detect range of valid categories, which
    # then equals catcount
    catcount <- max(catcount) - min(catcount) + 1

    # check if category count matches category label count
    if (!is.null(legend.labels)) {
      # how many labels do we have?
      # substract 1, if we have neutral category
      lll <- length(legend.labels) - adding
      # catcount and legend label count equal?
      if (catcount < lll) {
        # warn user that detected amount of categories and supplied legend labels
        # are different.
        warning("Length of labels for item categories `legend.labels` differs from detected amount of categories. Use `catcount` argument to define amount of item categories, if plotting does not work.", call. = F)
        # adjust catcount to length of legend labels, because
        # we assume that labels represent the valid range of
        # item categories
        catcount <- lll
      }
    }

    # is catcount odd or even? make catcount even
    if (sjmisc::is_odd(catcount)) {
      # warn user about uneven category count, but only if
      # neutral category is not inside valid categories
      if (!neutral.between)
        warning("Detected uneven category count in items. Dropping last category.", call. = F)

      catcount <- catcount - 1
    }
  }


  # set legend labels, if we have none yet

  if (is.null(legend.labels)) legend.labels <- seq_len(catcount + adding)


  # prepare data frames

  mydat.pos <- data.frame()
  mydat.neg <- data.frame()
  mydat.dk <- data.frame()
  freq.df <- data.frame()

  # If we have neutral category in between and not as last
  # category, recode neutral category to last category
  if (!is.null(cat.neutral) && cat.neutral <= catcount) {
    # first, each other category has to be moved down one position
    # therefore, we create a pattern with values from neutral
    # category to category count
    downvote <- seq(cat.neutral, catcount + 1, by = 1)

    # now we "shift" this value pattern and make a
    # string out of it
    recode.pattern <- paste0(
      paste0(sprintf("%i=%i", c(downvote[-1], downvote[1]), downvote),
             collapse = ";"), ";else=copy"
      )

    # all factors with char labels need to be numeric,
    # else, recode won't work

    items <- purrr::modify_if(
      items,
      is_labelled_factor,
      sjlabelled::as_numeric,
      keep.labels = FALSE
    )

    # finally, recode data
    items <- sjmisc::rec(items, rec = recode.pattern, append = FALSE)

    # re-order legend labels as well
    ll.order <- c(seq_len(catcount + adding)[-cat.neutral], cat.neutral)
    legend.labels <- legend.labels[ll.order]
  }

  # loop through all likert-items
  for (i in seq_len(ncol(items))) {

    # convert to numeric values
    if (!is.numeric(items[[i]])) {
      items[[i]] <- sjlabelled::as_numeric(items[[i]], keep.labels = F)
    }

    # If we don't plot neutral category, but item still contains
    # that category, replace it with NA

    if (is.null(cat.neutral) && max(items[[i]], na.rm = T) > catcount)
      items[[i]] <- sjmisc::set_na(items[[i]], na = catcount + 1, as.tag = F)


    # create proportional frequency table

    if (is.null(weight.by)) {
      tab <- round(prop.table(table(items[[i]])), digits + 3)
    } else {
      tab <- round(prop.table(stats::xtabs(weight.by ~ items[[i]])), digits + 3)
    }


    # retrieve category number and related frequencies

    counts <- as.numeric(tab)
    valid <- as.numeric(names(tab))


    # create frequency vector, so zero-categories are cared for

    freq <- rep(0, catcount + adding)
    freq[valid] <- counts

    # append to data frame

    if (ncol(freq.df) == 0)
      freq.df <- as.data.frame(freq)
    else {
      # check for valid rows. if we hav missing categories
      # in all items, argument "catcount" must be set, because
      # automatic detection of amount of categories does not
      # work then.
      if (length(freq) != nrow(freq.df))
        stop("Could not determine amount of item categories. Please use argument `catcount`.", call. = F)
      else
        freq.df <- as.data.frame(cbind(freq.df, freq))
    }
  }


  # Check whether N of each item should be included into axis labels

  if (show.n) {
    for (i in seq_len(length(axis.labels))) {
      axis.labels[i] <- paste(
        axis.labels[i],
        sprintf(" (n=%i)", length(stats::na.omit(items[[i]]))),
        sep = ""
      )
    }
  }

  # determine split between pos and neg values

  # lower.half <- rev(seq(catcount / 2))
  lower.half <- rev(seq(ceiling(catcount / 2)))
  # upper.half <- 1 + catcount - lower.half
  upper.half <- setdiff(seq.int(catcount), lower.half)

  # sum up values to total, so we can sort items

  sums.lower <- unname(apply(freq.df[lower.half, , drop = FALSE], 2, sum))
  sums.upper <- unname(apply(freq.df[upper.half, , drop = FALSE], 2, sum))

  # sort items

  if (is.null(sort.frq))
    sort.freq <- seq_len(ncol(freq.df))
  else if (sort.frq == "pos")
    sort.freq <- order(sums.lower)
  else if (sort.frq == "neg")
    sort.freq <- order(sums.upper)
  else
    sort.freq <- seq_len(ncol(freq.df))

  # reverse item order?

  if (!reverseOrder) sort.freq <- rev(sort.freq)

  # save summed up y-values, for label positioning and annotation

  ypos.sum.pos <- c()
  ypos.sum.neg <- c()
  ypos.sum.dk <- c()

  # iterate all frequencies of the items. we have the simple
  # data rows in this data frame and now need to "split"
  # positive and negative values

  for (i in seq_len(ncol(freq.df))) {
    # sort
    fr <- freq.df[, sort.freq[i]]

    # positive values. we need an x-position for each item,
    # a group indicator, the frequencies (as percent value),
    # and the y position for labels.

    mydat.pos <- as.data.frame(
      rbind(mydat.pos,
            cbind(x = i,
                  grp = lower.half,
                  frq = fr[lower.half],
                  ypos = cumsum(fr[lower.half]) - 0.5 * (fr[lower.half]),
                  ypos2 = sum(fr[lower.half])
      )))


    # summed y-position for plotting the summed up frequency labels

    ypos.sum.pos <- c(ypos.sum.pos, sum(fr[lower.half]))

    # same as above for negative values

    mydat.neg <- as.data.frame(
      rbind(mydat.neg,
            cbind(x = i,
                  grp = upper.half,
                  frq = -fr[upper.half],
                  ypos = -1 * (cumsum(fr[upper.half]) - 0.5 * (fr[upper.half])),
                  ypos2 = -1 * sum(fr[upper.half])
      )))

    # summed up (cumulative) percs
    ypos.sum.neg <- c(ypos.sum.neg, -1 * sum(fr[upper.half]))

    # same as above for neutral category, if we have any

    if (!is.null(cat.neutral)) {
      mydat.dk <- as.data.frame(
        rbind(mydat.dk,
              cbind(x = i,
                    grp = catcount + adding,
                    frq = -1 + fr[catcount + adding],
                    ypos = -1 + (fr[catcount + adding] / 2),
                    ypos2 = -1 + fr[catcount + adding],
                    offset = -1 * grid.range[1])
        ))

      # cumulative neutral cat
      ypos.sum.dk <- c(ypos.sum.dk, -1 + fr[catcount + adding])
    }
  }


  # x-positions for cumulative percentages

  xpos.sum.dk <- xpos.sum.neg <- xpos.sum.pos <- seq_len(length(ypos.sum.pos))

  # grp as factor

  mydat.pos$grp <- as.factor(mydat.pos$grp)
  mydat.neg$grp <- as.factor(mydat.neg$grp)

  # same for neutral
  if (!is.null(cat.neutral)) {
    mydat.dk$grp <- as.factor("neutral")
    mydat.dk$geom.size <- geom.size
    mydat.dk$digits <- digits
  }

  # label digits needed

  mydat.neg$digits <- digits
  mydat.pos$digits <- digits

  # Prepare and trim legend labels to appropriate size

  legend.labels <- sjmisc::word_wrap(legend.labels, wrap.legend.labels)

  if (!is.null(legend.title)) {
    legend.title <- sjmisc::word_wrap(legend.title, wrap.legend.title)
  }

  if (!is.null(title)) {
    if (!is.null(title.wtd.suffix)) {
      title <- paste(title, title.wtd.suffix, sep = "")
    }
    title <- sjmisc::word_wrap(title, wrap.title)
  }

  # check length of x-axis-labels and split longer strings at into new lines
  # every 10 chars, so labels don't overlap

  axis.labels <- sjmisc::word_wrap(axis.labels, wrap.labels)
  axis.labels <- axis.labels[sort.freq]

  # set diagram margins

  if (expand.grid) {
    expgrid <- waiver()
  } else {
    expgrid <- c(0, 0)
  }

  # Set up grid breaks. Calculate grid breaks starting at the center (0). Negative sequence is reversed. Positive sequence is skipping the 0 to avoid doubeling.

  gridbreaks <- round(c(rev(seq(0, -grid.range[1], by = -grid.breaks)), seq(grid.breaks, grid.range[2], by = grid.breaks)), 2)
  gridlabs <- ifelse(abs(gridbreaks) > 1, "", paste0(abs(round(100 * gridbreaks)), "%"))

  # start plot here

  gp <- ggplot() +
    # positive value bars
    geom_col(
      data = mydat.pos,
      aes_string(x = "x", y = "frq", fill = "grp"),
      width = geom.size
    ) +
    # negative value bars
    geom_col(
      data = mydat.neg,
      aes_string(x = "x", y = "frq", fill = "grp"),
      width = geom.size,
      position = position_stack(reverse = T)
    )

  # print bar for neutral category. this is a "fake" bar created
  # with geom_rect. to make this work, we need to set the x-axis
  # to a continuous scale...

  if (!is.null(cat.neutral)) {
    gp <- gp +
      geom_rect(
        data = mydat.dk,
        aes(
          xmin = .data$x - (geom.size / 2),
          xmax = .data$x + (geom.size / 2),
          ymin = .data$offset,
          ymax = .data$frq + (.data$offset + 1),
          fill = "neutral")
      )
  }

  # if we have neutral colors, we need to add the geom-color
  # to the color values.

  if (!is.null(cat.neutral)) geom.colors <- c(geom.colors, cat.neutral.color)

  # should percentage value labels be printed?

  percsign <- mydat.pos$percsign <- mydat.neg$percsign <- ifelse(isTRUE(show.prc.sign), "%", "")
  if (nrow(mydat.dk) > 0) mydat.dk$percsign <- percsign

  # creating value labels for cumulative percentages, so
  # zero-percentages are not printed

  ypos.sum.pos.lab  <- ifelse(ypos.sum.pos > 0, sprintf("%.*f%s", digits, 100 * ypos.sum.pos, percsign), "")
  ypos.sum.neg.lab  <- ifelse(ypos.sum.neg < 0, sprintf("%.*f%s", digits, 100 * abs(ypos.sum.neg), percsign), "")
  ypos.sum.dk.lab  <- ifelse(ypos.sum.dk > -1, sprintf("%.*f%s", digits, 100 * (1 + ypos.sum.dk), percsign), "")

  if (values == "show") {
    if (!requireNamespace("ggrepel", quietly = TRUE)) {
      stop("Package `ggrepel` needed to plot labels. Please install it.", call. = FALSE)
    }
    # show them in middle of bar
    gp <- gp +
      ggrepel::geom_text_repel(
        data = dplyr::filter(mydat.pos, .data$frq > 0),
        aes(
          x = .data$x,
          y = .data$frq,
          label = sprintf("%.*f%s", digits, 100 * .data$frq, percsign)
        ),
        direction = "y",
        position = position_stack(vjust = 0.5, reverse = TRUE),
        force = .5,
        point.padding = NA
      ) +
      ggrepel::geom_text_repel(
        data = dplyr::filter(mydat.neg, .data$frq < 0),
        aes(
          x = .data$x,
          y = .data$frq,
          label = sprintf("%.*f%s", digits, 100 * abs(.data$frq), percsign)
        ),
        direction = "y",
        position = position_stack(vjust = 0.5, reverse = TRUE),
        force = .5,
        point.padding = NA
      )

    if (!is.null(cat.neutral)) {
      gp <- gp +
        geom_text(
          data = dplyr::filter(mydat.dk, .data$frq > -1),
          aes(
            x = .data$x,
            y = .data$ypos + .data$offset + 1,
            label = sprintf("%.*f%s", digits, 100 * (1 + .data$frq), percsign)
          )
        )
    }
  } else if (values == "sum.inside" || values == "sum.outside") {
    # choose label offsets for summed proportions
    move_pos_labels_left = dplyr::case_when(
      values == "sum.outside" & !reverse.scale ~ T,
      values == "sum.inside" & !reverse.scale ~ F,
      values == "sum.outside" & reverse.scale ~ F,
      values == "sum.inside" & reverse.scale ~ T
    )
    # show cumulative outside bar
    if (move_pos_labels_left) {
      hort.pos <- -0.15
      hort.neg <- 1.15
      hort.dk <- -0.15
    # show cumulative inside bar
    } else {
      hort.pos <- 1.15
      hort.neg <- -0.15
      hort.dk <- 1.15
    }

    gp <- gp +
      annotate("text", x = xpos.sum.pos, y = ypos.sum.pos, hjust = hort.pos, label = ypos.sum.pos.lab) +
      annotate("text", x = xpos.sum.neg, y = ypos.sum.neg, hjust = hort.neg, label = ypos.sum.neg.lab)

    if (!is.null(cat.neutral)) {
      gp <- gp +
        annotate("text", x = xpos.sum.dk, y = ypos.sum.dk + 1 - grid.range[1], hjust = hort.dk, label = ypos.sum.dk.lab)
    }
  }

  # continues with plot

  gp <- gp +
    labs(title = title, x = axisTitle.x, y = axisTitle.y, fill = legend.title) +

    # scale x is continuous to make plotting the bar annotation
    # for neutral category work...

    scale_x_continuous(breaks = seq_len(ncol(freq.df)), labels = axis.labels) +
    geom_hline(yintercept = 0, color = intercept.line.color)

  # check wether percentage scale (y-axis) should be reversed

  if (!reverse.scale) {
    gp <- gp + scale_y_continuous(breaks = gridbreaks, limits = c(-grid.range[1], grid.range[2]), expand = expgrid, labels = gridlabs)
  } else {
    gp <- gp + scale_y_reverse(breaks = gridbreaks, limits = c(grid.range[2], -grid.range[1]), expand = expgrid, labels = gridlabs)
  }

  # check whether coordinates should be flipped, i.e.
  # swap x and y axis

  if (coord.flip) gp <- gp + coord_flip()

  # set geom colors

  sj.setGeomColors(
    gp,
    geom.colors,
    (catcount + adding),
    show.legend,
    legend.labels,
    reverse.colors
  )
}


# is factor with char levels?
#' @importFrom sjmisc is_num_fac
is_labelled_factor <- function(x) is.factor(x) && !sjmisc::is_num_fac(x)