1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
#' @title Plot regression models
#' @name plot_model
#'
#' @description
#' \code{plot_model()} creates plots from regression models, either
#' estimates (as so-called forest or dot whisker plots) or marginal effects.
#'
#' @param model A regression model object. Depending on the \code{type}, many
#' kinds of models are supported, e.g. from packages like \pkg{stats},
#' \pkg{lme4}, \pkg{nlme}, \pkg{rstanarm}, \pkg{survey}, \pkg{glmmTMB},
#' \pkg{MASS}, \pkg{brms} etc.
#' @param type Type of plot. There are three groups of plot-types: \cr \cr
#' \emph{Coefficients} (\href{https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html}{related vignette})
#' \describe{
#' \item{\code{type = "est"}}{Forest-plot of estimates. If the fitted model
#' only contains one predictor, slope-line is plotted.}
#' \item{\code{type = "re"}}{For mixed effects models, plots the random
#' effects.}
#' \item{\code{type = "std"}}{Forest-plot of standardized coefficients.}
#' \item{\code{type = "std2"}}{Forest-plot of standardized coefficients,
#' however, standardization is done by dividing by two SD (see 'Details').}
#' }
#' \emph{Marginal Effects} (\href{https://strengejacke.github.io/sjPlot/articles/plot_marginal_effects.html}{related vignette})
#' \describe{
#' \item{\code{type = "pred"}}{Predicted values (marginal effects) for
#' specific model terms. See \code{\link[ggeffects]{ggpredict}} for details.}
#' \item{\code{type = "eff"}}{Similar to \code{type = "pred"}, however,
#' discrete predictors are held constant at their proportions (not reference
#' level). See \code{\link[ggeffects]{ggeffect}} for details.}
#' \item{\code{type = "emm"}}{Similar to \code{type = "eff"}, see
#' \code{\link[ggeffects]{ggemmeans}} for details.}
#' \item{\code{type = "int"}}{Marginal effects of interaction terms in
#' \code{model}.}
#' }
#' \emph{Model diagnostics}
#' \describe{
#' \item{\code{type = "slope"}}{Slope of coefficients for each single
#' predictor, against the response (linear relationship between each model
#' term and response). See 'Details'.}
#' \item{\code{type = "resid"}}{Slope of coefficients for each single
#' predictor, against the residuals (linear relationship between each model
#' term and residuals). See 'Details'.}
#' \item{\code{type = "diag"}}{Check model assumptions. See 'Details'.}
#' }
#' \strong{Note:} For mixed models, the diagnostic plots like linear relationship
#' or check for Homoscedasticity, do \strong{not} take the uncertainty of
#' random effects into account, but is only based on the fixed effects part
#' of the model.
#' @param transform A character vector, naming a function that will be applied
#' on estimates and confidence intervals. By default, \code{transform} will
#' automatically use \code{"exp"} as transformation for applicable classes of
#' \code{model} (e.g. logistic or poisson regression). Estimates of linear
#' models remain untransformed. Use \code{NULL} if you want the raw,
#' non-transformed estimates.
#' @param terms Character vector with the names of those terms from \code{model}
#' that should be plotted. This argument depends on the plot-type:
#' \describe{
#' \item{\emph{Coefficients}}{Select terms that should be plotted. All other
#' term are removed from the output. Note that the term names must match
#' the names of the model's coefficients. For factors, this means that
#' the variable name is suffixed with the related factor level, and each
#' category counts as one term. E.g. \code{rm.terms = "t_name [2,3]"}
#' would remove the terms \code{"t_name2"} and \code{"t_name3"} (assuming
#' that the variable \code{t_name} is categorical and has at least
#' the factor levels \code{2} and \code{3}). Another example for the
#' \emph{iris}-dataset: \code{terms = "Species"} would not work, instead
#' you would write \code{terms = "Species [versicolor,virginica]"} to
#' remove these two levels, or \code{terms = "Speciesversicolor"} if you
#' just want to remove the level \emph{versicolor} from the plot.}
#' \item{\emph{Marginal Effects}}{Here \code{terms} indicates for which
#' terms marginal effects should be displayed. At least one term is
#' required to calculate effects, maximum length is three terms, where
#' the second and third term indicate the groups, i.e. predictions of
#' first term are grouped by the levels of the second (and third) term.
#' \code{terms} may also indicate higher order terms (e.g. interaction
#' terms). Indicating levels in square brackets allows for selecting only
#' specific groups. Term name and levels in brackets must be separated by
#' a whitespace character, e.g. \code{terms = c("age", "education [1,3]")}.
#' It is also possible to specify a range of numeric values for the
#' predictions with a colon, for instance \code{terms = c("education [1,3]",
#' "age [30:50]")}. Furthermore, it is possible to specify a function name.
#' Values for predictions will then be transformed, e.g.
#' \code{terms = "income [exp]"}. This is useful when model predictors were
#' transformed for fitting the model and should be back-transformed to the
#' original scale for predictions. Finally, numeric vectors for which no
#' specific values are given, a "pretty range" is calculated, to avoid
#' memory allocation problems for vectors with many unique values. If a
#' numeric vector is specified as second or third term (i.e. if this vector
#' represents a grouping structure), representative values (see
#' \code{\link[ggeffects]{values_at}}) are chosen. If all values for a
#' numeric vector should be used to compute predictions, you may use
#' e.g. terms = "age [all]". For more details, see
#' \code{\link[ggeffects]{ggpredict}}.}
#' }
#' @param sort.est Determines in which way estimates are sorted in the plot:
#' \itemize{
#' \item If \code{NULL} (default), no sorting is done and estimates are sorted in the same order as they appear in the model formula.
#' \item If \code{TRUE}, estimates are sorted in descending order, with highest estimate at the top.
#' \item If \code{sort.est = "sort.all"}, estimates are re-sorted for each coefficient (only applies if \code{type = "re"} and \code{grid = FALSE}), i.e. the estimates of the random effects for each predictor are sorted and plotted to an own plot.
#' \item If \code{type = "re"}, specify a predictor's / coefficient's name to sort estimates according to this random effect.
#' }
#' @param rm.terms Character vector with names that indicate which terms should
#' be removed from the plot. Counterpart to \code{terms}. \code{rm.terms =
#' "t_name"} would remove the term \emph{t_name}. Default is \code{NULL}, i.e.
#' all terms are used. For factors, levels that should be removed from the plot
#' need to be explicitely indicated in square brackets, and match the model's
#' coefficient names, e.g. \code{rm.terms = "t_name [2,3]"} would remove the terms
#' \code{"t_name2"} and \code{"t_name3"} (assuming that the variable \code{t_name}
#' was categorical and has at least the factor levels \code{2} and \code{3}).
#' Another example for the \emph{iris} dataset would be
#' \code{rm.terms = "Species [versicolor,virginica]"}. Note that the
#' \code{rm.terms}-argument does not apply to \emph{Marginal Effects} plots.
#' @param group.terms Numeric vector with group indices, to group coefficients.
#' Each group of coefficients gets its own color (see 'Examples').
#' @param order.terms Numeric vector, indicating in which order the coefficients
#' should be plotted. See examples in
#' \href{https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html}{this package-vignette}.
#' @param std.response Logical, whether the response variable will also be
#' standardized if standardized coefficients are requested. Setting both
#' \code{std.response = TRUE} and \code{show.std = TRUE} will behave as if
#' the complete data was standardized before fitting the model.
#' @param pred.type Character, only applies for \emph{Marginal Effects} plots
#' with mixed effects models. Indicates whether predicted values should be
#' conditioned on random effects (\code{pred.type = "re"}) or fixed effects
#' only (\code{pred.type = "fe"}, the default). For details, see documentation
#' of the \code{type}-argument in \code{\link[ggeffects]{ggpredict}}.
#' @param mdrt.values Indicates which values of the moderator variable should be
#' used when plotting interaction terms (i.e. \code{type = "int"}). \describe{
#' \item{\code{"minmax"}}{(default) minimum and maximum values (lower and
#' upper bounds) of the moderator are used to plot the interaction between
#' independent variable and moderator(s).} \item{\code{"meansd"}}{uses the
#' mean value of the moderator as well as one standard deviation below and
#' above mean value to plot the effect of the moderator on the independent
#' variable (following the convention suggested by Cohen and Cohen and
#' popularized by Aiken and West (1991), i.e. using the mean, the value one
#' standard deviation above, and the value one standard deviation below the
#' mean as values of the moderator, see
#' \href{https://www.theanalysisfactor.com/3-tips-interpreting-moderation/}{Grace-Martin
#' K: 3 Tips to Make Interpreting Moderation Effects Easier}).}
#' \item{\code{"zeromax"}}{is similar to the \code{"minmax"} option, however,
#' \code{0} is always used as minimum value for the moderator. This may be
#' useful for predictors that don't have an empirical zero-value, but absence
#' of moderation should be simulated by using 0 as minimum.}
#' \item{\code{"quart"}}{calculates and uses the quartiles (lower, median and
#' upper) of the moderator value.} \item{\code{"all"}}{uses all values of the
#' moderator variable.} }
#' @param ri.nr Numeric vector. If \code{type = "re"} and fitted model has more
#' than one random intercept, \code{ri.nr} indicates which random effects of
#' which random intercept (or: which list elements of
#' \code{\link[lme4]{ranef}}) will be plotted. Default is \code{NULL}, so all
#' random effects will be plotted.
#' @param title Character vector, used as plot title. By default,
#' \code{\link[sjlabelled]{response_labels}} is called to retrieve the label of
#' the dependent variable, which will be used as title. Use \code{title = ""}
#' to remove title.
#' @param axis.title Character vector of length one or two (depending on the
#' plot function and type), used as title(s) for the x and y axis. If not
#' specified, a default labelling is chosen. \strong{Note:} Some plot types
#' may not support this argument sufficiently. In such cases, use the returned
#' ggplot-object and add axis titles manually with
#' \code{\link[ggplot2]{labs}}. Use \code{axis.title = ""} to remove axis
#' titles.
#' @param axis.labels Character vector with labels for the model terms, used as
#' axis labels. By default, \code{\link[sjlabelled]{term_labels}} is
#' called to retrieve the labels of the coefficients, which will be used as
#' axis labels. Use \code{axis.labels = ""} or \code{auto.label = FALSE} to
#' use the variable names as labels instead. If \code{axis.labels} is a named
#' vector, axis labels (by default, the names of the model's coefficients)
#' will be matched with the names of \code{axis.label}. This ensures that
#' labels always match the related axis value, no matter in which way
#' axis labels are sorted.
#' @param axis.lim Numeric vector of length 2, defining the range of the plot
#' axis. Depending on plot-type, may effect either x- or y-axis. For
#' \emph{Marginal Effects} plots, \code{axis.lim} may also be a list of two
#' vectors of length 2, defining axis limits for both the x and y axis.
#' @param legend.title Character vector, used as legend title for plots that
#' have a legend.
#' @param grid.breaks Numeric value or vector; if \code{grid.breaks} is a
#' single value, sets the distance between breaks for the axis at every
#' \code{grid.breaks}'th position, where a major grid line is plotted. If
#' \code{grid.breaks} is a vector, values will be used to define the
#' axis positions of the major grid lines.
#' @param ci.lvl Numeric, the level of the confidence intervals (error bars).
#' Use \code{ci.lvl = NA} to remove error bars. For \code{stanreg}-models,
#' \code{ci.lvl} defines the (outer) probability for the \emph{credible interval}
#' that is plotted (see \code{\link[bayestestR]{ci}}). By
#' default, \code{stanreg}-models are printed with two intervals: the "inner"
#' interval, which defaults to the 50\%-CI; and the "outer" interval, which
#' defaults to the 89\%-CI. \code{ci.lvl} affects only the outer interval in
#' such cases. See \code{prob.inner} and \code{prob.outer} under the
#' \code{...}-argument for more details.
#' @param se Logical, if \code{TRUE}, the standard errors are
#' also printed. If robust standard errors are required, use arguments
#' \code{vcov.fun}, \code{vcov.type} and \code{vcov.args} (see
#' \code{\link[parameters]{standard_error}} for details), or use argument
#' \code{robust} as shortcut. \code{se} overrides
#' \code{ci.lvl}: if not \code{NULL}, arguments \code{ci.lvl} and \code{transform}
#' will be ignored. Currently, \code{se} only applies to \emph{Coefficients} plots.
#' @param show.intercept Logical, if \code{TRUE}, the intercept of the fitted
#' model is also plotted. Default is \code{FALSE}. If \code{transform =
#' "exp"}, please note that due to exponential transformation of estimates,
#' the intercept in some cases is non-finite and the plot can not be created.
#' @param show.values Logical, whether values should be plotted or not.
#' @param show.p Logical, adds asterisks that indicate the significance level of
#' estimates to the value labels.
#' @param show.data Logical, for \emph{Marginal Effects} plots, also plots the
#' raw data points.
#' @param show.legend For \emph{Marginal Effects} plots, shows or hides the
#' legend.
#' @param show.zeroinf Logical, if \code{TRUE}, shows the zero-inflation part of
#' hurdle- or zero-inflated models.
#' @param robust Deprecated. Please use \code{vcov.fun} directly to specify
#' the estimation of the variance-covariance matrix.
#' @param vcov.fun Variance-covariance matrix used to compute uncertainty
#' estimates (e.g., for robust standard errors). This argument accepts a
#' covariance matrix, a function which returns a covariance matrix, or a
#' string which identifies the function to be used to compute the covariance
#' matrix. See \code{\link[parameters:model_parameters]{model_parameters()}}.
#' @param vcov.type Deprecated. The \code{type}-argument is now included in
#' \code{vcov.args}.
#' @param vcov.args List of arguments to be passed to the function identified by
#' the \code{vcov.fun} argument. This function is typically supplied by the
#' \pkg{sandwich} or \pkg{clubSandwich} packages. Please refer to their
#' documentation (e.g., \code{?sandwich::vcovHAC}) to see the list of
#' available arguments.
#' @param value.offset Numeric, offset for text labels to adjust their position
#' relative to the dots or lines.
#' @param dot.size Numeric, size of the dots that indicate the point estimates.
#' @param line.size Numeric, size of the lines that indicate the error bars.
#' @param colors May be a character vector of color values in hex-format, valid
#' color value names (see \code{demo("colors")}) or a name of a pre-defined
#' color palette. Following options are valid for the \code{colors} argument:
#' \itemize{
#' \item If not specified, a default color brewer palette will be used, which is suitable for the plot style.
#' \item If \code{"gs"}, a greyscale will be used.
#' \item If \code{"bw"}, and plot-type is a line-plot, the plot is black/white and uses different line types to distinguish groups (see \href{https://strengejacke.github.io/sjPlot/articles/blackwhitefigures.html}{this package-vignette}).
#' \item If \code{colors} is any valid color brewer palette name, the related palette will be used. Use \code{RColorBrewer::display.brewer.all()} to view all available palette names.
#' \item There are some pre-defined color palettes in this package, see \code{\link{sjPlot-themes}} for details.
#' \item Else specify own color values or names as vector (e.g. \code{colors = "#00ff00"} or \code{colors = c("firebrick", "blue")}).
#' }
#' @param grid Logical, if \code{TRUE}, multiple plots are plotted as grid
#' layout.
#' @param p.threshold Numeric vector of length 3, indicating the treshold for
#' annotating p-values with asterisks. Only applies if
#' \code{p.style = "asterisk"}.
#' @param p.val Character specifying method to be used to calculate p-values.
#' Defaults to "profile" for glm/polr models, otherwise "wald".
#' @param wrap.title Numeric, determines how many chars of the plot title are
#' displayed in one line and when a line break is inserted.
#' @param wrap.labels Numeric, determines how many chars of the value, variable
#' or axis labels are displayed in one line and when a line break is inserted.
#' @param case Desired target case. Labels will automatically converted into the
#' specified character case. See \code{snakecase::to_any_case()} for more
#' details on this argument. By default, if \code{case} is not specified,
#' it will be set to \code{"parsed"}, unless \code{prefix.labels} is not
#' \code{"none"}. If \code{prefix.labels} is either \code{"label"} (or
#' \code{"l"}) or \code{"varname"} (or \code{"v"}) and \code{case} is not
#' specified, it will be set to \code{NULL} - this is a more convenient
#' default when prefixing labels.
#' @param auto.label Logical, if \code{TRUE} (the default),
#' and \href{https://strengejacke.github.io/sjlabelled/articles/intro_sjlabelled.html}{data is labelled},
#' \code{\link[sjlabelled]{term_labels}} is called to retrieve the labels
#' of the coefficients, which will be used as predictor labels. If data is
#' not labelled, \href{https://easystats.github.io/parameters/reference/format_parameters.html}{format_parameters()}
#' is used to create pretty labels. If \code{auto.label = FALSE},
#' original variable names and value labels (factor levels) are used.
#' @param prefix.labels Indicates whether the value labels of categorical variables
#' should be prefixed, e.g. with the variable name or variable label. See
#' argument \code{prefix} in \code{\link[sjlabelled]{term_labels}} for
#' details.
#' @param jitter Numeric, between 0 and 1. If \code{show.data = TRUE}, you can
#' add a small amount of random variation to the location of each data point.
#' \code{jitter} then indicates the width, i.e. how much of a bin's width
#' will be occupied by the jittered values.
#' @param digits Numeric, amount of digits after decimal point when rounding
#' estimates or values.
#' @param p.adjust Character vector, if not \code{NULL}, indicates the method
#' to adjust p-values. See \code{\link[stats]{p.adjust}} for details.
#' @param value.size Numeric, indicates the size of value labels. Can be used
#' for all plot types where the argument \code{show.values} is applicable,
#' e.g. \code{value.size = 4}.
#' @param vline.color Color of the vertical "zero effect" line. Default color is
#' inherited from the current theme.
#' @param bpe For \strong{Stan}-models (fitted with the \pkg{rstanarm}- or
#' \pkg{brms}-package), the Bayesian point estimate is, by default, the median
#' of the posterior distribution. Use \code{bpe} to define other functions to
#' calculate the Bayesian point estimate. \code{bpe} needs to be a character
#' naming the specific function, which is passed to the \code{fun}-argument in
#' \code{\link[sjmisc]{typical_value}}. So, \code{bpe = "mean"} would
#' calculate the mean value of the posterior distribution.
#' @param bpe.style For \strong{Stan}-models (fitted with the \pkg{rstanarm}- or
#' \pkg{brms}-package), the Bayesian point estimate is indicated as a small,
#' vertical line by default. Use \code{bpe.style = "dot"} to plot a dot
#' instead of a line for the point estimate.
#' @param bpe.color Character vector, indicating the color of the Bayesian
#' point estimate. Setting \code{bpe.color = NULL} will inherit the color
#' from the mapped aesthetic to match it with the geom's color.
#' @param ci.style Character vector, defining whether inner and outer intervals
#' for Bayesion models are shown in boxplot-style (\code{"whisker"}) or in
#' bars with different alpha-levels (\code{"bar"}).
#' @param ... Other arguments, passed down to various functions. Here is a list
#' of supported arguments and their description in detail.
#' \describe{
#' \item{\code{prob.inner} and \code{prob.outer}}{For \strong{Stan}-models
#' (fitted with the \pkg{rstanarm}- or \pkg{brms}-package) and coefficients
#' plot-types, you can specify numeric values between 0 and 1 for
#' \code{prob.inner} and \code{prob.outer}, which will then be used as inner
#' and outer probabilities for the uncertainty intervals (HDI). By default,
#' the inner probability is 0.5 and the outer probability is 0.89 (unless
#' \code{ci.lvl} is specified - in this case, \code{ci.lvl} is used as outer
#' probability).
#' }
#' \item{\code{size.inner}}{For \strong{Stan}-models and \emph{Coefficients}
#' plot-types, you can specify the width of the bar for the inner
#' probabilities. Default is \code{0.1}. Setting \code{size.inner = 0}
#' removes the inner probability regions.
#' }
#' \item{\code{width}, \code{alpha}, and \code{scale}}{Passed
#' down to \code{geom_errorbar()} or \code{geom_density_ridges()}, for
#' forest or diagnostic plots.
#' }
#' \item{\code{width}, \code{alpha}, \code{dot.alpha}, \code{dodge} and \code{log.y}}{Passed
#' down to \code{\link[ggeffects]{plot.ggeffects}} for \emph{Marginal Effects}
#' plots.
#' }
#' \item{\code{show.loess}}{Logical, for diagnostic plot-types \code{"slope"}
#' and \code{"resid"}, adds (or hides) a loess-smoothed line to the plot.
#' }
#' \item{\emph{Marginal Effects} plot-types}{When plotting marginal effects,
#' arguments are also passed down to \code{\link[ggeffects]{ggpredict}},
#' \code{\link[ggeffects]{ggeffect}} or \code{\link[ggeffects]{plot.ggeffects}}.
#' }
#' \item{Case conversion of labels}{For case conversion of labels (see argument
#' \code{case}), arguments \code{sep_in} and \code{sep_out} will be passed
#' down to \code{snakecase::to_any_case()}. This only
#' applies to automatically retrieved term labels, \emph{not} if
#' term labels are provided by the \code{axis.labels}-argument.
#' }
#' }
#'
#' @return
#' Depending on the plot-type, \code{plot_model()} returns a
#' \code{ggplot}-object or a list of such objects. \code{get_model_data}
#' returns the associated data with the plot-object as tidy data frame, or
#' (depending on the plot-type) a list of such data frames.
#'
#' @details
#' \subsection{Different Plot Types}{
#' \describe{
#' \item{\code{type = "std"}}{Plots standardized estimates. See details below.}
#' \item{\code{type = "std2"}}{Plots standardized estimates, however,
#' standardization follows Gelman's (2008) suggestion, rescaling the
#' estimates by dividing them by two standard deviations instead of just one.
#' Resulting coefficients are then directly comparable for untransformed
#' binary predictors.
#' }
#' \item{\code{type = "pred"}}{Plots estimated marginal means (or marginal effects).
#' Simply wraps \code{\link[ggeffects]{ggpredict}}. See also
#' \href{https://strengejacke.github.io/sjPlot/articles/plot_marginal_effects.html}{this package-vignette}.
#' }
#' \item{\code{type = "eff"}}{Plots estimated marginal means (or marginal effects).
#' Simply wraps \code{\link[ggeffects]{ggeffect}}. See also
#' \href{https://strengejacke.github.io/sjPlot/articles/plot_marginal_effects.html}{this package-vignette}.
#' }
#' \item{\code{type = "int"}}{A shortcut for marginal effects plots, where
#' interaction terms are automatically detected and used as
#' \code{terms}-argument. Furthermore, if the moderator variable (the second
#' - and third - term in an interaction) is continuous, \code{type = "int"}
#' automatically chooses useful values based on the \code{mdrt.values}-argument,
#' which are passed to \code{terms}. Then, \code{\link[ggeffects]{ggpredict}}
#' is called. \code{type = "int"} plots the interaction term that appears
#' first in the formula along the x-axis, while the second (and possibly
#' third) variable in an interaction is used as grouping factor(s)
#' (moderating variable). Use \code{type = "pred"} or \code{type = "eff"}
#' and specify a certain order in the \code{terms}-argument to indicate
#' which variable(s) should be used as moderator. See also
#' \href{https://strengejacke.github.io/sjPlot/articles/plot_interactions.html}{this package-vignette}.
#' }
#' \item{\code{type = "slope"} and \code{type = "resid"}}{Simple diagnostic-plots,
#' where a linear model for each single predictor is plotted against the
#' response variable, or the model's residuals. Additionally, a loess-smoothed
#' line is added to the plot. The main purpose of these plots is to check whether
#' the relationship between outcome (or residuals) and a predictor is roughly
#' linear or not. Since the plots are based on a simple linear regression with
#' only one model predictor at the moment, the slopes (i.e. coefficients) may
#' differ from the coefficients of the complete model.
#' }
#' \item{\code{type = "diag"}}{For \strong{Stan-models}, plots the prior versus
#' posterior samples. For \strong{linear (mixed) models}, plots for
#' multicollinearity-check (Variance Inflation Factors), QQ-plots,
#' checks for normal distribution of residuals and homoscedasticity
#' (constant variance of residuals) are shown. For \strong{generalized
#' linear mixed models}, returns the QQ-plot for random effects.
#' }
#' }
#' }
#' \subsection{Standardized Estimates}{
#' Default standardization is done by completely refitting the model on the
#' standardized data. Hence, this approach is equal to standardizing the
#' variables before fitting the model, which is particularly recommended for
#' complex models that include interactions or transformations (e.g., polynomial
#' or spline terms). When \code{type = "std2"}, standardization of estimates
#' follows \href{http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf}{Gelman's (2008)}
#' suggestion, rescaling the estimates by dividing them by two standard deviations
#' instead of just one. Resulting coefficients are then directly comparable for
#' untransformed binary predictors.
#' }
#'
#' @references
#' Gelman A (2008) "Scaling regression inputs by dividing by two
#' standard deviations." \emph{Statistics in Medicine 27: 2865-2873.}
#' \url{http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf}
#' \cr \cr
#' Aiken and West (1991). Multiple Regression: Testing and Interpreting Interactions.
#'
#' @examples
#' # prepare data
#' if (requireNamespace("haven")) {
#' library(sjmisc)
#' data(efc)
#' efc <- to_factor(efc, c161sex, e42dep, c172code)
#' m <- lm(neg_c_7 ~ pos_v_4 + c12hour + e42dep + c172code, data = efc)
#'
#' # simple forest plot
#' plot_model(m)
#'
#' # grouped coefficients
#' plot_model(m, group.terms = c(1, 2, 3, 3, 3, 4, 4))
#'
#' # keep only selected terms in the model: pos_v_4, the
#' # levels 3 and 4 of factor e42dep and levels 2 and 3 for c172code
#' plot_model(m, terms = c("pos_v_4", "e42dep [3,4]", "c172code [2,3]"))
#' }
#'
#' # multiple plots, as returned from "diagnostic"-plot type,
#' # can be arranged with 'plot_grid()'
#' \dontrun{
#' p <- plot_model(m, type = "diag")
#' plot_grid(p)}
#'
#' # plot random effects
#' if (require("lme4") && require("glmmTMB")) {
#' m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
#' plot_model(m, type = "re")
#'
#' # plot marginal effects
#' plot_model(m, type = "pred", terms = "Days")
#' }
#' # plot interactions
#' \dontrun{
#' m <- glm(
#' tot_sc_e ~ c161sex + c172code * neg_c_7,
#' data = efc,
#' family = poisson()
#' )
#' # type = "int" automatically selects groups for continuous moderator
#' # variables - see argument 'mdrt.values'. The following function call is
#' # identical to:
#' # plot_model(m, type = "pred", terms = c("c172code", "neg_c_7 [7,28]"))
#' plot_model(m, type = "int")
#'
#' # switch moderator
#' plot_model(m, type = "pred", terms = c("neg_c_7", "c172code"))
#' # same as
#' # ggeffects::ggpredict(m, terms = c("neg_c_7", "c172code"))}
#'
#' # plot Stan-model
#' \dontrun{
#' if (require("rstanarm")) {
#' data(mtcars)
#' m <- stan_glm(mpg ~ wt + am + cyl + gear, data = mtcars, chains = 1)
#' plot_model(m, bpe.style = "dot")
#' }}
#'
#' @export
plot_model <- function(model,
type = c("est", "re", "eff", "emm", "pred", "int", "std", "std2", "slope", "resid", "diag"),
transform,
terms = NULL,
sort.est = NULL,
rm.terms = NULL,
group.terms = NULL,
order.terms = NULL,
pred.type = c("fe", "re"),
mdrt.values = c("minmax", "meansd", "zeromax", "quart", "all"),
ri.nr = NULL,
title = NULL,
axis.title = NULL,
axis.labels = NULL,
legend.title = NULL,
wrap.title = 50,
wrap.labels = 25,
axis.lim = NULL,
grid.breaks = NULL,
ci.lvl = NULL,
se = NULL,
robust = FALSE,
vcov.fun = NULL,
vcov.type = NULL,
vcov.args = NULL,
colors = "Set1",
show.intercept = FALSE,
show.values = FALSE,
show.p = TRUE,
show.data = FALSE,
show.legend = TRUE,
show.zeroinf = TRUE,
value.offset = NULL,
value.size,
jitter = NULL,
digits = 2,
dot.size = NULL,
line.size = NULL,
vline.color = NULL,
p.threshold = c(0.05, 0.01, 0.001),
p.val = NULL,
p.adjust = NULL,
grid,
case,
auto.label = TRUE,
prefix.labels = c("none", "varname", "label"),
bpe = "median",
bpe.style = "line",
bpe.color = "white",
ci.style = c("whisker", "bar"),
std.response = TRUE,
...
) {
type <- match.arg(type)
pred.type <- match.arg(pred.type)
mdrt.values <- match.arg(mdrt.values)
prefix.labels <- match.arg(prefix.labels)
ci.style <- match.arg(ci.style)
# if we prefix labels, use different default for case conversion,
# else the separating white spaces after colon are removed.
if (missing(case)) {
if (prefix.labels == "none")
case <- "parsed"
else
case <- NULL
}
if (isTRUE(robust)) {
vcov.fun <- "HC3"
}
# get info on model family
fam.info <- insight::model_info(model)
if (insight::is_multivariate(model))
fam.info <- fam.info[[1]]
# check whether estimates should be transformed or not
if (missing(transform)) {
if (fam.info$is_linear)
transform <- NULL
else
transform <- "exp"
}
# get titles and labels for axis ----
# this is not appropriate when plotting random effects,
# so retrieve labels only for other plot types
if (type %in% c("est", "std", "std2") && isTRUE(auto.label)) {
# get labels of dependent variables, and wrap them if too long
if (is.null(title)) title <- sjlabelled::response_labels(model, case = case, mv = fam.info$is_multivariate, ...)
title <- sjmisc::word_wrap(title, wrap = wrap.title)
# labels for axis with term names
if (is.null(axis.labels)) {
term_labels <- sjlabelled::term_labels(model, case = case, prefix = prefix.labels, ...)
if (.labelled_model_data(model) || is.stan(model)) axis.labels <- term_labels
}
axis.labels <- sjmisc::word_wrap(axis.labels, wrap = wrap.labels)
# title for axis with estimate values
if (is.null(axis.title)) axis.title <- sjmisc::word_wrap(estimate_axis_title(fit = model, axis.title = axis.title, type = type, transform = transform, include.zeroinf = TRUE), wrap = wrap.title)
axis.title <- sjmisc::word_wrap(axis.title, wrap = wrap.labels)
}
# check nr of estimates. if only one, plot slope
if (type == "est" &&
length(insight::find_predictors(model, component = "conditional", flatten = TRUE)) == 1 &&
length(insight::find_predictors(model, component = "instruments", flatten = TRUE)) == 0 &&
fam.info$is_linear && one_par(model)) type <- "slope"
# set some default options for stan-models, which are not
# available or appropriate for these
if (is.stan(model)) {
# no p-values
show.p <- FALSE
# no standardized coefficients
if (type %in% c("std", "std2", "slope")) type <- "est"
}
# set defaults for arguments, depending on model ----
if (is.null(ci.lvl)) ci.lvl <- dplyr::if_else(is.stan(model), .89, .95)
if (is.null(dot.size)) dot.size <- dplyr::if_else(is.stan(model), 1, 2.5)
if (is.null(line.size)) line.size <- dplyr::if_else(is.stan(model), .7, .7)
if (is.null(value.offset)) value.offset <- dplyr::if_else(is.stan(model), .25, .15)
# check if plot-type is applicable
if (type == "slope" && !fam.info$is_linear) {
type <- "est"
message("Plot-type \"slope\" only available for linear models. Using `type = \"est\"` now.")
}
if (type %in% c("est", "std", "std2") || (is.stan(model) && type == "re")) {
# plot estimates ----
p <- plot_type_est(
type = type,
ci.lvl = ci.lvl,
se = se,
tf = transform,
model = model,
terms = terms,
group.terms = group.terms,
rm.terms = rm.terms,
sort.est = sort.est,
title = title,
axis.title = axis.title,
axis.labels = axis.labels,
axis.lim = axis.lim,
grid.breaks = grid.breaks,
show.intercept = show.intercept,
show.values = show.values,
show.p = show.p,
value.offset = value.offset,
digits = digits,
geom.colors = colors,
geom.size = dot.size,
line.size = line.size,
order.terms = order.terms,
vline.color = vline.color,
value.size = value.size,
bpe = bpe,
bpe.style = bpe.style,
bpe.color = bpe.color,
facets = grid,
show.zeroinf = show.zeroinf,
p.threshold = p.threshold,
p.val = p.val,
vcov.fun = vcov.fun,
vcov.type = vcov.type,
vcov.args = vcov.args,
ci.style = ci.style,
p_adjust = p.adjust,
std.response = std.response,
...
)
} else if (type == "re") {
# plot random effects ----
p <- plot_type_ranef(
model = model,
ri.nr = ri.nr,
ci.lvl = ci.lvl,
se = se,
tf = transform,
sort.est = sort.est,
title = title,
axis.labels = axis.labels,
axis.lim = axis.lim,
grid.breaks = grid.breaks,
show.values = show.values,
value.offset = value.offset,
digits = digits,
facets = grid,
geom.colors = colors,
geom.size = dot.size,
line.size = line.size,
vline.color = vline.color,
value.size = value.size,
bpe.color = bpe.color,
ci.style = ci.style,
...
)
} else if (type %in% c("pred", "eff", "emm")) {
# plot marginal effects ----
p <- plot_type_eff(
type = type,
model = model,
terms = terms,
ci.lvl = ci.lvl,
pred.type = pred.type,
facets = grid,
show.data = show.data,
jitter = jitter,
geom.colors = colors,
axis.title = axis.title,
title = title,
legend.title = legend.title,
axis.lim = axis.lim,
case = case,
show.legend = show.legend,
dot.size = dot.size,
line.size = line.size,
...
)
} else if (type == "int") {
# plot interaction terms ----
p <- plot_type_int(
model = model,
mdrt.values = mdrt.values,
ci.lvl = ci.lvl,
pred.type = pred.type,
facets = grid,
show.data = show.data,
jitter = jitter,
geom.colors = colors,
axis.title = axis.title,
title = title,
legend.title = legend.title,
axis.lim = axis.lim,
case = case,
show.legend = show.legend,
dot.size = dot.size,
line.size = line.size,
...
)
} else if (type %in% c("slope", "resid")) {
# plot slopes of estimates ----
p <- plot_type_slope(
model = model,
terms = terms,
rm.terms = rm.terms,
ci.lvl = ci.lvl,
colors = colors,
title = title,
show.data = show.data,
jitter = jitter,
facets = grid,
axis.title = axis.title,
case = case,
useResiduals = type == "resid",
...
)
} else if (type == "diag") {
# plot diagnostic plots ----
if (is.stan(model)) {
p <- plot_diag_stan(
model = model,
geom.colors = colors,
axis.lim = axis.lim,
facets = grid,
axis.labels = axis.labels,
...
)
} else if (fam.info$is_linear) {
p <- plot_diag_linear(
model = model,
geom.colors = colors,
dot.size = dot.size,
line.size = line.size,
...
)
} else {
p <- plot_diag_glm(
model = model,
geom.colors = colors,
dot.size = dot.size,
line.size = line.size,
...
)
}
}
p
}
#' @importFrom purrr map
#' @rdname plot_model
#' @export
get_model_data <- function(model,
type = c("est", "re", "eff", "pred", "int", "std", "std2", "slope", "resid", "diag"),
transform,
terms = NULL,
sort.est = NULL,
rm.terms = NULL,
group.terms = NULL,
order.terms = NULL,
pred.type = c("fe", "re"),
ri.nr = NULL,
ci.lvl = NULL,
colors = "Set1",
grid,
case = "parsed",
digits = 2,
...) {
p <- plot_model(
model = model,
type = type,
transform = transform,
terms = terms,
sort.est = sort.est,
rm.terms = rm.terms,
group.terms = group.terms,
order.terms = order.terms,
pred.type = pred.type,
ri.nr = ri.nr,
ci.lvl = ci.lvl,
colors = colors,
grid = grid,
case = case,
digits = digits,
auto.label = FALSE,
...
)
if (inherits(p, "list"))
purrr::map(p, ~ .x$data)
else
p$data
}
#' @importFrom insight has_intercept
one_par <- function(model) {
tryCatch(
{
length(stats::coef(model)) < 2 & !insight::has_intercept(model)
},
error = function(x) { FALSE }
)
}
|