1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
#' @title Forest plot of multiple regression models
#' @name plot_models
#'
#' @description Plot and compare regression coefficients with confidence
#' intervals of multiple regression models in one plot.
#'
#' @param ... One or more regression models, including glm's or mixed models.
#' May also be a \code{list} with fitted models. See 'Examples'.
#' @param std.est Choose whether standardized coefficients should be used
#' for plotting. Default is no standardization (\code{std.est = NULL}).
#' May be \code{"std"} for standardized beta values or \code{"std2"}, where
#' standardization is done by rescaling estimates by dividing them by two sd.
#' @param m.labels Character vector, used to indicate the different models
#' in the plot's legend. If not specified, the labels of the dependent
#' variables for each model are used.
#' @param legend.pval.title Character vector, used as title of the plot legend that
#' indicates the p-values. Default is \code{"p-level"}. Only applies if
#' \code{p.shape = TRUE}.
#' @param spacing Numeric, spacing between the dots and error bars of the
#' plotted fitted models. Default is 0.3.
#' @param p.shape Logical, if \code{TRUE}, significant levels are distinguished by
#' different point shapes and a related legend is plotted. Default
#' is \code{FALSE}.
#'
#' @inheritParams plot_model
#' @inheritParams plot_grpfrq
#'
#' @return A ggplot-object.
#'
#' @examples
#' data(efc)
#'
#' # fit three models
#' fit1 <- lm(barthtot ~ c160age + c12hour + c161sex + c172code, data = efc)
#' fit2 <- lm(neg_c_7 ~ c160age + c12hour + c161sex + c172code, data = efc)
#' fit3 <- lm(tot_sc_e ~ c160age + c12hour + c161sex + c172code, data = efc)
#'
#' # plot multiple models
#' plot_models(fit1, fit2, fit3, grid = TRUE)
#'
#' # plot multiple models with legend labels and
#' # point shapes instead of value labels
#' plot_models(
#' fit1, fit2, fit3,
#' axis.labels = c(
#' "Carer's Age", "Hours of Care", "Carer's Sex", "Educational Status"
#' ),
#' m.labels = c("Barthel Index", "Negative Impact", "Services used"),
#' show.values = FALSE, show.p = FALSE, p.shape = TRUE
#' )
#'
#' \dontrun{
#' # plot multiple models from nested lists argument
#' all.models <- list()
#' all.models[[1]] <- fit1
#' all.models[[2]] <- fit2
#' all.models[[3]] <- fit3
#'
#' plot_models(all.models)
#'
#' # plot multiple models with different predictors (stepwise inclusion),
#' # standardized estimates
#' fit1 <- lm(mpg ~ wt + cyl + disp + gear, data = mtcars)
#' fit2 <- update(fit1, . ~ . + hp)
#' fit3 <- update(fit2, . ~ . + am)
#'
#' plot_models(fit1, fit2, fit3, std.est = "std2")
#' }
#' @import ggplot2
#' @importFrom rlang .data
#' @export
plot_models <- function(...,
transform = NULL,
std.est = NULL,
std.response = TRUE,
rm.terms = NULL,
title = NULL,
m.labels = NULL,
legend.title = "Dependent Variables",
legend.pval.title = "p-level",
axis.labels = NULL,
axis.title = NULL,
axis.lim = NULL,
wrap.title = 50,
wrap.labels = 25,
wrap.legend.title = 20,
grid.breaks = NULL,
dot.size = 3,
line.size = NULL,
value.size = NULL,
spacing = 0.4,
colors = "Set1",
show.values = FALSE,
show.legend = TRUE,
show.intercept = FALSE,
show.p = TRUE,
p.shape = FALSE,
p.threshold = c(0.05, 0.01, 0.001),
p.adjust = NULL,
ci.lvl = .95,
robust = FALSE,
vcov.fun = NULL,
vcov.type = c("HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5"),
vcov.args = NULL,
vline.color = NULL,
digits = 2,
grid = FALSE,
auto.label = TRUE,
prefix.labels = c("none", "varname", "label")) {
# retrieve list of fitted models
input_list <- list(...)
names(input_list) <- unlist(lapply(match.call(expand.dots = FALSE)$`...`, deparse))
vcov.type <- match.arg(vcov.type)
if (isTRUE(robust)) {
vcov.type <- "HC3"
vcov.fun <- "vcovHC"
}
# check se-argument
vcov.fun <- check_se_argument(se = vcov.fun, type = "est")
if (missing(line.size) || is.null(line.size)) line.size <- .7
if (missing(value.size) || is.null(value.size)) value.size <- 4
# check length. if we have a list of fitted model, we need to "unlist" them
if (length(input_list) == 1 && inherits(input_list[[1]], "list"))
input_list <- purrr::map(input_list[[1]], ~ .x)
# check input if really models
is_model <- vapply(input_list, insight::is_model, logical(1))
if (!all(is_model)) {
insight::format_error(
"Some of the provided objects were not recognized as regression models.",
"Maybe you are using invalid function arguments? Please check the documentation (`?plot_models`) and your code."
)
}
# get info on model family
fam.info <- insight::model_info(input_list[[1]])
if (insight::is_multivariate(input_list[[1]]))
fam.info <- fam.info[[1]]
# check whether estimates should be transformed or not
if (missing(transform)) {
if (fam.info$is_linear) {
tf <- NULL
} else {
tf <- "exp"
}
} else {
tf <- transform
}
# check for standardization, only applies to linear models
# if (!any(inherits(input_list[[1]], c("lm", "lmerMod", "lme"), which = TRUE) == 1))
# std.est <- NULL
if (!is.null(std.est)) {
std_method <- switch(std.est, "std" = "refit", "std2" = "2sd", "refit")
} else {
std_method <- FALSE
}
# if not standardized, we can get simple tidy output and
# need to check whether intercept should be removed or not
fl <- purrr::map(
input_list,
~ tidy_model(
model = .x,
ci.lvl = ci.lvl,
tf = transform,
type = "est",
bpe = "median",
robust = list(vcov.fun = vcov.fun, vcov.type = vcov.type, vcov.args = vcov.args),
facets = TRUE,
show.zeroinf = FALSE,
p.val = "wald",
standardize = std_method,
std.response = std.response,
bootstrap = FALSE,
iterations = 1000,
seed = NULL,
p_adjust = p.adjust
)
)
# remove intercept from output
if (!show.intercept) {
fl <- purrr::map(fl, function(x) {
rm.i <- string_ends_with("(Intercept)", x = x$term)
if (length(rm.i)) {
dplyr::slice(x, !! -rm.i)
} else {
x
}
})
}
# exponentiation
if (!is.null(tf)) {
funtrans <- match.fun(tf)
fl <- purrr::map(fl, function(x) {
x[["estimate"]] <- funtrans(x[["estimate"]])
x[["conf.low"]] <- funtrans(x[["conf.low"]])
x[["conf.high"]] <- funtrans(x[["conf.high"]])
x
})
}
# add grouping index
for (i in seq_along(fl)) {
fl[[i]] <- sjmisc::add_variables(fl[[i]], group = as.character(i), .after = Inf)
}
# merge models to one data frame
ff <- dplyr::bind_rows(fl)
# remove further estimates
rm.terms <- parse_terms(rm.terms)
rems <- !(ff$term %in% rm.terms)
if (!is.null(rm.terms)) ff <- dplyr::filter(ff, !! rems)
# get labels of dependent variables, and wrap them if too long
if (is.null(m.labels)) m.labels <- sjlabelled::response_labels(input_list)
m.labels <- sjmisc::word_wrap(m.labels, wrap = wrap.labels)
# make sure we have distinct labels, because we use them as
# factor levels. else, duplicated factor levels will be dropped,
# leading to missing groups in plot output
if (anyDuplicated(m.labels) > 0)
m.labels <- suppressMessages(tidy_label(m.labels))
ff$group <- as.factor(ff$group)
levels(ff$group) <- m.labels
# reverse group, to plot correct order from top to bottom
ff$group <- factor(ff$group, levels = rev(unique(ff$group)))
# add p-asterisks to data
ff$p.stars <- get_p_stars(ff$p.value, p.threshold)
ff$p.label <- sprintf("%.*f", digits, ff$estimate)
if (show.p) ff$p.label <- sprintf("%s %s", ff$p.label, ff$p.stars)
# axis limits and tick breaks for y-axis
axis.scaling <- axis_limits_and_ticks(
axis.lim = axis.lim,
min.val = min(ff$conf.low),
max.val = max(ff$conf.high),
grid.breaks = grid.breaks,
exponentiate = isTRUE(tf == "exp"),
min.est = min(ff$estimate),
max.est = max(ff$estimate)
)
# based on current ggplot theme, highlights vertical default line
yintercept <- if (isTRUE(tf == "exp")) 1 else 0
layer_vertical_line <- geom_intercept_line(yintercept, axis.scaling, vline.color)
# reorder terms
ff$term <- factor(ff$term, levels = rev(unique(ff$term)))
# ensure correct legend labels
ff$p.stars[ff$p.stars == ""] <- "n.s."
ff$p.stars <- factor(ff$p.stars, levels = c("n.s.", "*", "**", "***"))
# set up base plot
if (p.shape)
p <- ggplot(ff, aes_string(x = "term", y = "estimate", colour = "group", shape = "p.stars"))
else
p <- ggplot(ff, aes_string(x = "term", y = "estimate", colour = "group"))
p <- p +
layer_vertical_line +
geom_point(position = position_dodge(spacing), size = dot.size) +
geom_errorbar(
aes_string(ymin = "conf.low", ymax = "conf.high"),
position = position_dodge(spacing),
width = 0,
size = line.size
) +
coord_flip() +
guides(colour = guide_legend(reverse = TRUE))
# show different shapes depending on p-value
if (p.shape) p <- p + scale_shape_manual(values = c(1, 16, 17, 15))
# add value labels
if (show.values) p <- p +
geom_text(
aes_string(label = "p.label"),
position = position_dodge(spacing),
vjust = spacing * -1.5,
hjust = -.1,
show.legend = FALSE,
size = value.size
)
# check axis labels
if (is.null(axis.labels) && isTRUE(auto.label))
axis.labels <- sjlabelled::term_labels(input_list, prefix = prefix.labels)
# set axis labels
p <- p + scale_x_discrete(labels = sjmisc::word_wrap(axis.labels, wrap = wrap.labels))
# hide legend?
if (!show.legend) p <- p + guides(colour = "none", shape = "none")
# facets
if (grid) p <- p + facet_grid(~group)
# we need transformed scale for exponentiated estimates
if (isTRUE(tf == "exp")) {
p <- p + scale_y_continuous(
trans = "log10",
limits = axis.scaling$axis.lim,
breaks = axis.scaling$ticks,
labels = prettyNum
)
} else {
p <- p + scale_y_continuous(
limits = axis.scaling$axis.lim,
breaks = axis.scaling$ticks,
labels = axis.scaling$ticks
)
}
# set colors
p <- p + scale_colour_manual(values = col_check2(colors, length(m.labels)))
# set axis and plot titles
p <-
p + labs(
x = NULL,
y = sjmisc::word_wrap(estimate_axis_title(input_list[[1]], axis.title, type = "est", transform = !is.null(tf)), wrap = wrap.title),
title = sjmisc::word_wrap(title, wrap = wrap.title),
colour = sjmisc::word_wrap(legend.title, wrap = wrap.legend.title),
shape = sjmisc::word_wrap(legend.pval.title, wrap = wrap.legend.title)
)
p
}
|