File: plot_scatter.R

package info (click to toggle)
r-cran-sjplot 2.8.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,596 kB
  • sloc: sh: 13; makefile: 2
file content (367 lines) | stat: -rw-r--r-- 10,784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#' @title Plot (grouped) scatter plots
#' @name plot_scatter
#'
#' @description Display scatter plot of two variables. Adding a grouping variable to
#'   the scatter plot is possible. Furthermore, fitted lines can be added
#'   for each group as well as for the overall plot.
#'
#' @param data A data frame, or a grouped data frame.
#' @param x Name of the variable for the x-axis.
#' @param y Name of the variable for the y-axis.
#' @param grp Optional, name of the grouping-variable. If not missing, the
#'   scatter plot will be grouped. See 'Examples'.
#' @param dot.labels Character vector with names for each coordinate pair given
#'   by \code{x} and \code{y}, so text labels are added to the plot.
#'   Must be of same length as \code{x} and \code{y}.
#'   If \code{dot.labels} has a different length, data points will be trimmed
#'   to match \code{dot.labels}. If \code{dot.labels = NULL} (default),
#'   no labels are printed.
#' @param label.size Size of text labels if argument \code{dot.labels} is used.
#' @param fit.line,fit.grps Specifies the method to add a fitted line accross
#'   the data points. Possible values are for instance \code{"lm"}, \code{"glm"},
#'   \code{"loess"} or \code{"auto"}. If \code{NULL}, no line is plotted.
#'   \code{fit.line} adds a fitted line for the complete data, while \code{fit.grps}
#'   adds a fitted line for each subgroup of \code{grp}.
#' @param emph.dots Logical, if \code{TRUE}, overlapping points at same coordinates
#'          will be becomme larger, so point size indicates amount of overlapping.
#' @param show.rug Logical, if \code{TRUE}, a marginal rug plot is displayed
#'          in the graph.
#'
#' @return A ggplot-object. For grouped data frames, a list of ggplot-objects for
#'   each group in the data.
#'
#' @inheritParams plot_model
#' @inheritParams plot_grpfrq
#'
#' @examples
#' # load sample date
#' library(sjmisc)
#' library(sjlabelled)
#' data(efc)
#'
#' # simple scatter plot
#' plot_scatter(efc, e16sex, neg_c_7)
#'
#' # simple scatter plot, increased jittering
#' plot_scatter(efc, e16sex, neg_c_7, jitter = .4)
#'
#' # grouped scatter plot
#' plot_scatter(efc, c160age, e17age, e42dep)
#'
#' # grouped scatter plot with marginal rug plot
#' # and add fitted line for complete data
#' plot_scatter(
#'   efc, c12hour, c160age, c172code,
#'   show.rug = TRUE, fit.line = "lm"
#' )
#'
#' # grouped scatter plot with marginal rug plot
#' # and add fitted line for each group
#' plot_scatter(
#'   efc, c12hour, c160age, c172code,
#'   show.rug = TRUE, fit.grps = "loess",
#'   grid = TRUE
#' )
#'
#' @import ggplot2
#' @export
plot_scatter <- function(
  data,
  x,
  y,
  grp,
  title = "",
  legend.title = NULL,
  legend.labels = NULL,
  dot.labels = NULL,
  axis.titles = NULL,
  dot.size = 1.5,
  label.size = 3,
  colors = "metro",
  fit.line = NULL,
  fit.grps = NULL,
  show.rug = FALSE,
  show.legend = TRUE,
  show.ci = FALSE,
  wrap.title = 50,
  wrap.legend.title = 20,
  wrap.legend.labels = 20,
  jitter = .05,
  emph.dots = FALSE,
  grid = FALSE
) {

  # check available packages

  if (!is.null(dot.labels) && !requireNamespace("ggrepel", quietly = TRUE)) {
    stop("Package `ggrepel` needed to plot labels. Please install it.", call. = FALSE)
  }


  # get data

  name.x <- deparse(substitute(x))
  name.y <- deparse(substitute(y))

  if (!missing(grp))
    name.grp <- deparse(substitute(grp))
  else
    name.grp <- NULL


  # optionally hide legend if not needed

  if (!is.null(name.grp) && grid && missing(show.legend)) show.legend <- FALSE

  pl <- NULL

  if (inherits(data, "grouped_df")) {
    # get grouped data
    grps <- get_grouped_data(data)

    # now plot everything
    for (i in seq_len(nrow(grps))) {
      # copy back labels to grouped data frame
      tmp <- sjlabelled::copy_labels(grps$data[[i]], data)

      # prepare argument list, including title
      tmp.title <- get_grouped_plottitle(data, grps, i, sep = "\n")

      # copy data

      x <- tmp[[name.x]]
      y <- tmp[[name.y]]
      if (!is.null(name.grp))
        grp <- tmp[[name.grp]]
      else
        grp <- NULL

      # prepare color palette

      if (!is.null(grp))
        collen <- dplyr::n_distinct(grp, na.rm = TRUE)
      else
        collen <- 1

      colors <- col_check2(colors, collen)

      # plot

      plots <- scatter_helper(
        x, y, grp, title = tmp.title, legend.title, legend.labels, dot.labels, axis.titles,
        dot.size, label.size, colors, fit.line, fit.grps, show.rug,
        show.legend, show.ci, wrap.title, wrap.legend.title, wrap.legend.labels,
        jitter, emph.dots, grid, name.x, name.y, name.grp
      )

      # add plots, check for NULL results
      pl <- c(pl, list(plots))
    }
  } else {
    # copy data
    x <- data[[name.x]]
    y <- data[[name.y]]
    if (!is.null(name.grp))
      grp <- data[[name.grp]]
    else
      grp <- NULL

    # prepare color palette

    if (!is.null(grp))
      collen <- dplyr::n_distinct(grp, na.rm = TRUE)
    else
      collen <- 1

    colors <- col_check2(colors, collen)

    # plot

    pl <- scatter_helper(
      x, y, grp, title, legend.title, legend.labels, dot.labels, axis.titles,
      dot.size, label.size, colors, fit.line, fit.grps, show.rug,
      show.legend, show.ci, wrap.title, wrap.legend.title, wrap.legend.labels,
      jitter, emph.dots, grid, name.x, name.y, name.grp
    )
  }

  pl
}


#' @importFrom stats na.omit
#' @importFrom sjlabelled get_labels get_label
#' @importFrom sjmisc word_wrap
scatter_helper <- function(
  x, y, grp, title, legend.title, legend.labels, dot.labels, axis.titles,
  dot.size, label.size, colors, fit.line, fit.grps, show.rug,
  show.legend, show.ci, wrap.title, wrap.legend.title, wrap.legend.labels,
  jitter, emph.dots, grid, name.x, name.y, name.grp

) {
  # any missing names?

  if (is.null(name.x) || name.x == "NULL") name.x <- ""
  if (is.null(name.y) || name.y == "NULL") name.y <- ""

  # copy titles

  if (is.null(axis.titles)) {
    axisTitle.x <- NULL
    axisTitle.y <- NULL
  } else {
    axisTitle.x <- axis.titles[1]
    if (length(axis.titles) > 1)
      axisTitle.y <- axis.titles[2]
    else
      axisTitle.y <- NULL
  }


  # try to automatically set labels is not passed as parameter

  if (is.null(legend.labels) && !is.null(grp)) {
    legend.labels <- sjlabelled::get_labels(
      grp,
      attr.only = F,
      values = NULL,
      non.labelled = T
    )
  }

  if (is.null(legend.title) && !is.null(grp)) legend.title <- sjlabelled::get_label(grp, def.value = name.grp)
  if (is.null(axisTitle.x)) axisTitle.x <- sjlabelled::get_label(x, def.value = name.x)
  if (is.null(axisTitle.y)) axisTitle.y <- sjlabelled::get_label(y, def.value = name.y)

  if (is.null(title)) {
    t1 <- sjlabelled::get_label(x, def.value = name.x)
    t2 <- sjlabelled::get_label(y, def.value = name.y)
    if (!is.null(t1) && !is.null(t2)) {
      title <- paste0(t1, " by ", t2)
      if (!is.null(grp)) {
        t3 <- sjlabelled::get_label(grp, def.value = name.grp)
        if (!is.null(t3)) title <- paste0(title, " (grouped by ", t3, ")")
      }
    }
  }

  # remove titles if empty

  if (!is.null(legend.title) && legend.title == "") legend.title <- NULL
  if (!is.null(axisTitle.x) && axisTitle.x == "") axisTitle.x <- NULL
  if (!is.null(axisTitle.y) && axisTitle.y == "") axisTitle.y <- NULL
  if (!is.null(title) && title == "") title <- NULL


  # create data frame

  # check whether we have grouping variable
  if (is.null(grp)) {
    # if not, add a dummy grouping variable
    grp <- rep(1, length(x))
    # we don't need legend here
    show.legend <- FALSE
  }

  # get value labels from attribute
  grl <- sjlabelled::get_labels(grp, attr.only = T)

  # simple data frame
  dat <- stats::na.omit(data.frame(x = x, y = y, grp = grp))

  # group as factor
  dat$grp <- as.factor(dat$grp)

  # set labelled levels, for facets
  if (grid && !is.null(grl)) levels(dat$grp) <- grl

  # do we have point labels?
  if (!is.null(dot.labels)) {
    # check length
    if (length(dot.labels) > nrow(dat)) {
      # Tell user that we have too many point labels
      warning("More point labels than data points. Omitting remaining point labels", call. = F)
      # shorten vector
      dot.labels <- dot.labels[seq_len(nrow(dat))]
    } else if (length(dot.labels) < nrow(dat)) {
      # Tell user that we have too less point labels
      warning("Less point labels than data points. Omitting remaining data point", call. = F)
      # shorten data frame
      dat <- dat[seq_len(length(dot.labels)), ]
    }
    # append labels
    dat$dot.lab <- as.character(dot.labels)
  }

  # fix and wrap labels and titles

  if (is.null(legend.labels)) legend.labels <- as.character(sort(unique(dat$grp)))
  legend.labels <- sjmisc::word_wrap(legend.labels, wrap.legend.labels)

  if (!is.null(legend.title)) legend.title <- sjmisc::word_wrap(legend.title, wrap.legend.title)
  if (!is.null(title)) title <- sjmisc::word_wrap(title, wrap.title)
  if (!is.null(axisTitle.x)) axisTitle.x <- sjmisc::word_wrap(axisTitle.x, wrap.title)
  if (!is.null(axisTitle.y)) axisTitle.y <- sjmisc::word_wrap(axisTitle.y, wrap.title)

  # Plot scatter plot

  scp <- ggplot(dat, aes_string(x = "x", y = "y", colour = "grp"))


  # add marginal rug

  if (show.rug) {
    scp <- scp + geom_rug(position = position_jitter(width = jitter))
  }

  # add data points

  if (emph.dots) {
    # indicate overlapping dots by point size
    scp <- scp + geom_count(show.legend = F, position = position_jitter(width = jitter))
  } else {
    # else plot dots
    scp <- scp + geom_jitter(size = dot.size, position = position_jitter(width = jitter))
  }


  # add labels

  if (!is.null(dot.labels)) {
    scp <- scp +
      ggrepel::geom_text_repel(aes_string(label = "dot.lab"), size = label.size)

  }


  # Show fitted lines

  if (!is.null(fit.grps)) {
    scp <- scp +
      stat_smooth(data = dat, aes_string(colour = "grp"), method = fit.grps, se = show.ci)
  }

  if (!is.null(fit.line)) {
    scp <- scp +
      stat_smooth(method = fit.line, se = show.ci, colour = "black")
  }


  # set font size for axes.

  scp <- scp +
    labs(title = title, x = axisTitle.x, y = axisTitle.y, colour = legend.title)


  # facet plot

  if (grid) scp <- scp + facet_wrap(~grp)

  sj.setGeomColors(
    scp,
    colors,
    length(legend.labels),
    show.legend,
    legend.labels
  )
}