1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
plot_type_int <- function(model,
mdrt.values,
ci.lvl,
pred.type,
facets,
show.data,
jitter,
geom.colors,
axis.title,
title,
legend.title,
axis.lim,
case,
show.legend,
dot.size,
line.size,
...) {
# interaction terms are separated with ":"
int.terms <- insight::find_interactions(model, component = "conditional", flatten = TRUE)
# stop if no interaction found
if (is.null(int.terms))
stop("No interaction term found in model.", call. = F)
# get interaction terms and model frame
ia.terms <- purrr::map(int.terms, ~ sjmisc::trim(unlist(strsplit(.x, "[\\*:]"))))
mf <- insight::get_data(model, verbose = FALSE)
pl <- list()
# intertate interaction terms
for (i in seq_along(ia.terms)) {
ia <- ia.terms[[i]]
find.fac <- purrr::map_lgl(ia, ~ is_categorical(mf[[.x]]))
# find all non-categorical variables, except first
# term, which is considered as being along the x-axis
check_cont <- ia[-1][!find.fac[2:length(find.fac)]]
# if we have just categorical as interaction terms,
# we plot all category values
if (!sjmisc::is_empty(check_cont)) {
# get data from continuous interaction terms. we
# need this to compute the specific values that
# should be used as group characteristic for the plot
cont_terms <- dplyr::select(mf, !! check_cont)
# for quartiles used as moderator values, make sure
# that the variable's range is large enough to compute
# quartiles
mdrt.val <- mv_check(mdrt.values = mdrt.values, cont_terms)
# prepare terms for ggpredict()-call. terms is a character-vector
# with term name and values to plot in square brackets
terms <- purrr::map_chr(check_cont, function(x) {
if (mdrt.val == "minmax") {
ct.min <- min(cont_terms[[x]], na.rm = TRUE)
ct.max <- max(cont_terms[[x]], na.rm = TRUE)
if (sjmisc::is_float(ct.min) || sjmisc::is_float(ct.max))
sprintf("%s [%.2f,%.2f]", x, ct.min, ct.max)
else
sprintf("%s [%i,%i]", x, ct.min, ct.max)
} else if (mdrt.val == "meansd") {
mw <- mean(cont_terms[[x]], na.rm = TRUE)
sabw <- stats::sd(cont_terms[[x]], na.rm = TRUE)
sprintf("%s [%.2f,%.2f,%.2f]", x, mw, mw - sabw, mw + sabw)
} else if (mdrt.val == "zeromax") {
ct.max <- max(cont_terms[[x]], na.rm = TRUE)
if (sjmisc::is_float(ct.max))
sprintf("%s [0,%.2f]", x, ct.max)
else
sprintf("%s [0,%i]", x, ct.max)
} else if (mdrt.val == "quart") {
qu <- as.vector(stats::quantile(cont_terms[[x]], na.rm = T))
sprintf("%s [%.2f,%.2f,%.2f]", x, qu[3], qu[2], qu[4])
} else {
x
}
})
ia[match(check_cont, ia)] <- terms
}
# compute marginal effects for interaction terms
pred.type <- switch(pred.type,
fe = "fixed",
re = "random",
pred.type
)
dat <- ggeffects::ggpredict(
model = model,
terms = ia,
ci_level = ci.lvl,
type = pred.type,
full.data = FALSE,
...
)
# evaluate dots-arguments
alpha <- .15
dodge <- .1
dot.alpha <- .5
log.y <- FALSE
add.args <- lapply(match.call(expand.dots = F)$`...`, function(x) x)
if ("alpha" %in% names(add.args)) alpha <- eval(add.args[["alpha"]])
if ("dodge" %in% names(add.args)) dodge <- eval(add.args[["dodge"]])
if ("dot.alpha" %in% names(add.args)) dot.alpha <- eval(add.args[["dot.alpha"]])
if ("log.y" %in% names(add.args)) log.y <- eval(add.args[["log.y"]])
# select color palette
if (is.null(geom.colors) || geom.colors[1] != "bw")
geom.colors <- col_check2(geom.colors, dplyr::n_distinct(dat$group))
# save plot of marginal effects for interaction terms
p <- graphics::plot(
dat,
show_ci = !is.na(ci.lvl),
facets = facets,
show_data = show.data,
colors = geom.colors,
jitter = jitter,
use_theme = FALSE,
case = case,
show_legend = show.legend,
dot_alpha = dot.alpha,
alpha = alpha,
dodge = dodge,
log_y = log.y,
dot_size = dot.size,
line_size = line.size
)
# set axis and plot titles
if (!is.null(axis.title)) {
if (length(axis.title) > 1) {
p <- p + labs(x = axis.title[1], y = axis.title[2])
} else {
p <- p + labs(y = axis.title)
}
}
# set axis and plot titles
if (!is.null(title))
p <- p + ggtitle(title)
# set axis and plot titles
if (!is.null(legend.title))
p <- p + labs(colour = legend.title)
# set axis limits
if (!is.null(axis.lim)) {
if (is.list(axis.lim))
p <- p + xlim(axis.lim[[1]]) + ylim(axis.lim[[2]])
else
p <- p + ylim(axis.lim)
}
# add plot result to final return value
if (length(ia.terms) == 1)
pl <- p
else
pl[[length(pl) + 1]] <- p
}
pl
}
#' @importFrom stats na.omit
is_categorical <- function(x) {
is.factor(x) || (length(unique(stats::na.omit(x))) < 3)
}
#' @importFrom stats quantile
#' @importFrom purrr map_dbl
mv_check <- function(mdrt.values, x) {
# for quartiles used as moderator values, make sure
# that the variable's range is large enough to compute
# quartiles
if (mdrt.values == "quart") {
if (!is.data.frame(x)) x <- as.data.frame(x)
mvc <- purrr::map_dbl(x, ~ length(unique(as.vector(stats::quantile(.x, na.rm = T)))))
if (any(mvc < 3)) {
# tell user that quart won't work
message("Could not compute quartiles, too small range of moderator variable. Defaulting `mdrt.values` to `minmax`.")
mdrt.values <- "minmax"
}
}
mdrt.values
}
|