1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
plot_type_ranef <- function(model,
dat,
ri.nr,
ci.lvl,
se,
tf,
sort.est,
title,
axis.labels,
axis.lim,
grid.breaks,
show.values,
value.offset,
digits,
facets,
geom.colors,
geom.size,
line.size,
vline.color,
value.size,
bpe.color,
ci.style,
...) {
if (inherits(model, "clmm")) {
se <- FALSE
ci.lvl <- NA
}
if (!requireNamespace("lme4", quietly = TRUE)) {
stop("Package 'lme4' required for this function to work, please install it.")
}
# get tidy output of summary ----
if (inherits(model, "glmmTMB")) {
if (!requireNamespace("glmmTMB", quietly = TRUE)) {
stop("Package 'glmmTMB' required for this function to work, please install it.")
}
rand.ef <- glmmTMB::ranef(model)[[1]]
} else {
rand.ef <- lme4::ranef(model)
if (inherits(model, "MixMod")) {
if (!is.list(rand.ef)) {
rand.ef <- list(rand.ef)
names(rand.ef) <- insight::find_random(model, flatten = TRUE)
}
}
}
if (inherits(model, "clmm"))
rand.se <- NULL
else if (inherits(model, "glmmTMB")) {
if (requireNamespace("TMB", quietly = TRUE)) {
s1 <- TMB::sdreport(model$obj, getJointPrecision = TRUE)
s2 <- sqrt(s1$diag.cov.random)
rand.se <- purrr::map(rand.ef, function(.x) {
cnt <- nrow(.x) * ncol(.x)
s3 <- s2[1:cnt]
s2 <- s2[-(1:cnt)]
as.data.frame(matrix(sqrt(s3), ncol = ncol(.x), byrow = TRUE))
})
} else {
se <- FALSE
ci.lvl <- NA
rand.se <- NULL
}
} else
rand.se <- se_ranef(model)
# get some initial values
ri.cnt <- length(rand.ef)
ran.names <- names(rand.ef)
# set some initial values
loops <- 1
p <- list()
if (missing(value.size) || is.null(value.size)) value.size <- 4
# do we have a specific random intercept
# specified? If yes, check valid index
if (!missing(ri.nr) && !is.null(ri.nr)) {
out.of.bounds <- which(ri.nr > ri.cnt)
# remove out of bound indices
if (length(out.of.bounds) > 0) {
ri.nr <- ri.nr[-out.of.bounds]
# any valid indices left?
if (length(ri.nr) == 0) {
stop("All indices specified in `ri.nr` were greater than amount of random intercepts in model. Please use valid range for `ri.nr`.", call. = F)
} else {
message("One or more indices specified in `ri.nr` were greater than amount of random intercepts in model. These indices have been removed from `ri.nr`.")
}
}
# our looping counter contains all rand. int. indices
loops <- ri.nr
} else {
# else, if ri.nr was NULL, plot all random intercepts, i.e.
# looping counter contains all index numbers
loops <- ri.nr <- seq_len(ri.cnt)
}
# convert to list of data frames, keep only needed random effects
rand.ef <- purrr::map(loops, ~ rownames_as_column(rand.ef[[.x]]))
# same for standard errors...
rand.se <- purrr::map(loops, ~ rownames_as_column(as.data.frame(rand.se[.x])))
# update loops counter
loops <- 1:length(rand.ef)
# if we have only one random intercept, and facet.grid
# not specified, default it to false
if (missing(facets)) facets <- any(purrr::map_lgl(rand.ef, ~ length(.x) > 1)) || length(ri.nr) > 1
# set default sorting. if "sort.est" is logical, set
# default string value for sorting
if (!is.null(sort.est)) {
if (isTRUE(sort.est))
sort.est <- "sort.all"
else if (is.logical(sort.est))
sort.est <- NULL
}
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- 1 - ((1 - ci.lvl) / 2)
else
ci <- NA
# iterate all random effects
for (lcnt in loops) {
mydf.ef <- as.data.frame(rand.ef[[lcnt]])
if (!sjmisc::is_empty(rand.se)) se.fit <- rand.se[[lcnt]]
grp.names <- colnames(mydf.ef)
grp.names[2] <- paste(ran.names[lcnt], grp.names[2])
# use rownames, if axis.labels not available
if (is.null(axis.labels))
alabels <- mydf.ef[["rowname"]]
else
alabels <- axis.labels
# select random effects for each coefficient
mydf <- purrr::map_df(2:ncol(mydf.ef), function(i) {
tmp <- data_frame(estimate = mydf.ef[[i]])
if (isTRUE(se)) {
tmp$conf.low = mydf.ef[[i]] - se.fit[[i]]
tmp$conf.high = mydf.ef[[i]] + se.fit[[i]]
} else if (!is.na(ci.lvl)) {
tmp$conf.low = mydf.ef[[i]] - (stats::qnorm(ci) * se.fit[[i]])
tmp$conf.high = mydf.ef[[i]] + (stats::qnorm(ci) * se.fit[[i]])
} else {
tmp$conf.low = NA
tmp$conf.high = NA
}
if (!is.null(tf)) {
# no transformation if standard errors should be reported
# instead of conf. int.
if (isTRUE(se)) {
message("If standard errors are requested, no transformation is applied to estimates.")
tf <- NULL
} else {
funtrans <- match.fun(tf)
tmp$estimate <- funtrans(tmp$estimate)
tmp$conf.low <- funtrans(tmp$conf.low)
tmp$conf.high <- funtrans(tmp$conf.high)
}
}
# set column names (variable / coefficient name)
# as group indicator, and save axis labels and title in variable
tmp$facet <- grp.names[i]
tmp$term <- factor(alabels)
tmp$title <-
dplyr::if_else(facets, "Random effects", sprintf("Random effects of %s", grp.names[i]))
# sort data frame, initial order
reihe <- seq_len(nrow(tmp))
# sorting requested?
if (!is.null(sort.est)) {
# should all plots be sorted? works only
# when faceting is FALSE
if (sort.est == "sort.all") {
if (facets) {
# no sorting with facet.grids, because y-axis-labels
# (group levels / labels) have to be re-sorted for
# each coefficient, which is not possible with facet.grids
message("Sorting each group of random effects ('sort.all') is not possible when 'facets = TRUE'.")
} else {
# sort odds ratios of random effects
# for current coefficient
reihe <- order(mydf.ef[[i]])
}
} else {
# else, just sort a specific coefficient
# this also works with facet.grid
reihe <- order(mydf.ef[[sort.est]])
}
}
# sort axis labels
tmp$reihe <- order(reihe)
# create default grouping, depending on the effect:
# split positive and negative associations with outcome
# into different groups
treshold <- dplyr::if_else(isTRUE(tf == "exp"), 1, 0)
tmp$group <- dplyr::if_else(tmp$estimate > treshold, "pos", "neg")
# no p-values for random effects,
# but value labels
ps <- rep("", nrow(tmp))
if (show.values) ps <- sprintf("%.*f", digits, tmp$estimate)
tmp$p.label <- ps
tmp
})
# if user doesn't want facets, split data frame at each facet-group
# and call plot-function for each sub-data frame. we need to remove
# the facet variable, else the plotting function would try to plot facets
if (!facets)
mydf <- purrr::map(split(mydf, f = mydf$facet), ~ sjmisc::remove_var(.x, "facet"))
else
mydf <- list(mydf)
pl <- purrr::map2(
mydf,
1:length(mydf),
function(x, y) {
# sort terms
x$term <- factor(x$term, levels = unique(x$term[order(x$reihe)]))
# now we need a named vector, in order
# to match labels and term order at axis
labs <- as.character(x$term)
names(labs) <- labs
# plot title
if (sjmisc::is_empty(title)) {
ptitle <- x[["title"]]
} else {
if (length(title) >= y)
ptitle <- title[y]
else
ptitle <- title
}
# plot random effects
plot_point_estimates(
model = model,
dat = x,
tf = tf,
title = ptitle,
axis.labels = labs,
axis.title = NULL,
axis.lim = axis.lim,
grid.breaks = grid.breaks,
show.values = show.values,
value.offset = value.offset,
geom.size = geom.size,
line.size = line.size,
geom.colors = geom.colors,
vline.color = vline.color,
value.size = value.size,
facets = facets,
bpe.color = bpe.color,
ci.style = ci.style,
...
)
}
)
# add plot result to final return value
if (length(loops) == 1 && length(mydf) == 1)
p <- pl[[1]]
else {
for (i in seq_len(length(pl)))
p[[length(p) + 1]] <- pl[[i]]
}
}
p
}
|