1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
plot_type_slope <- function(model,
terms,
rm.terms,
ci.lvl,
colors,
show.data,
jitter,
facets,
axis.title,
case,
useResiduals,
...) {
alpha <- .2
show.loess <- TRUE
if (missing(facets)) facets <- TRUE
# additional arguments?
add.args <- lapply(match.call(expand.dots = F)$`...`, function(x) x)
if ("alpha" %in% names(add.args)) alpha <- eval(add.args[["alpha"]])
if ("show.loess" %in% names(add.args)) show.loess <- eval(add.args[["show.loess"]])
# set color defaults
colors <- col_check2(colors, if (isTRUE(show.loess)) 3 else 2)
if (isTRUE(show.loess)) {
lineColor <- colors[1]
loessLineColor <- colors[2]
pointColor <- colors[3]
} else {
lineColor <- colors[1]
pointColor <- colors[2]
}
# retrieve amount of predictor variables and
# retrieve column names of dataset so we can identify in which
# column the data for each predictor is.
model_data <- insight::get_data(model, verbose = FALSE)
depvar.label <- sjlabelled::get_label(model_data[[1]], def.value = insight::find_response(model), case = case)
predvars <- insight::find_predictors(model, component = "conditional", flatten = TRUE)
# tell user that interaction terms are not supported by this method
if (sjmisc::str_contains(deparse(stats::formula(model)), c(":", "*"), logic = "or")) {
warning("Interaction terms are not supported by this plot type. Output for interaction terms may be inappropriate.", call. = F)
}
# remove estimates?
if (!is.null(rm.terms)) {
remcols <- match(rm.terms, predvars)
if (!sjmisc::is_empty(remcols))
predvars <- predvars[-remcols]
}
# select specific setimates?
if (!is.null(terms)) {
remcols <- match(terms, predvars)
if (!sjmisc::is_empty(remcols))
predvars <- predvars[remcols]
}
# retrieve name of dependent variable
response <- ifelse(isTRUE(useResiduals), "residuals", depvar.label)
# iterate all predictors
mydat <- suppressWarnings(purrr::map_df(predvars, function(p_v) {
# make sure we have the variable in our data. for mixed
# models, we might have some random effects which were not
# in the model frame
if (obj_has_name(model_data, p_v)) {
if (useResiduals) {
data_frame(
x = sjlabelled::as_numeric(model_data[[p_v]]),
y = stats::residuals(model),
group = sjlabelled::get_label(model_data[[p_v]], def.value = p_v, case = case)
)
} else {
data_frame(
x = sjlabelled::as_numeric(model_data[[p_v]]),
y = insight::get_response(model),
group = sjlabelled::get_label(model_data[[p_v]], def.value = p_v, case = case)
)
}
}
}))
# facets, all in one plot
if (facets) {
p <- ggplot(mydat, aes(x = .data$x, y = .data$y)) +
stat_smooth(
method = "lm", se = !is.na(ci.lvl), colour = lineColor,
fill = lineColor, alpha = alpha, level = ci.lvl
)
if (isTRUE(show.loess))
p <- p + stat_smooth(method = "loess", colour = loessLineColor, se = FALSE)
# plot raw data if requested
if (show.data) {
if (!is.null(jitter))
p <- p + geom_jitter(alpha = .2, colour = pointColor, shape = 16, width = jitter)
else
p <- p + geom_point(alpha = .2, colour = pointColor, shape = 16)
}
p <- p + facet_wrap(~group, scales = "free")
# set plot labs
p <- p + labs(x = NULL, y = response)
} else {
p <- list()
for (p_v in unique(mydat$group)) {
dat <- dplyr::filter(mydat, .data$group == !! p_v)
pl <- ggplot(dat, aes(x = .data$x, y = .data$y)) +
stat_smooth(
method = "lm", se = !is.na(ci.lvl), colour = lineColor,
fill = lineColor, alpha = alpha, level = ci.lvl
)
if (isTRUE(show.loess))
pl <- pl + stat_smooth(method = "loess", colour = loessLineColor, se = FALSE)
# plot raw data if requested
if (show.data)
pl <- pl + geom_point(alpha = .2, colour = pointColor, shape = 16)
# set plot labs. check if we have custom axis titles
if (!is.null(axis.title)) {
if (is.list(axis.title)) {
xt <- axis.title[[length(p) + 1]][1]
yt <- axis.title[[length(p) + 1]][2]
} else {
xt <- axis.title[1]
yt <- axis.title[2]
}
} else {
xt <- p_v
yt <- response
}
pl <- pl +
labs(x = xt, y = yt)
# add plot object to list
p[[length(p) + 1]] <- pl
}
}
p
}
|