1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
#' @title Plot correlation matrix
#' @name sjp.corr
#'
#' @description Plot correlation matrix as ellipses or tiles.
#'
#' @param data Matrix with correlation coefficients as returned by the
#' \code{\link{cor}}-function, or a \code{data.frame} of variables where
#' correlations between columns should be computed.
#' @param sort.corr Logical, if \code{TRUE} (default), the axis labels are sorted
#' according to the correlation strength. If \code{FALSE}, axis labels
#' appear in order of how variables were included in the cor-computation or
#' data frame.
#' @param decimals Indicates how many decimal values after comma are printed when
#' the values labels are shown. Default is 3. Only applies when
#' \code{show.values = TRUE}.
#' @param na.deletion Indicates how missing values are treated. May be either
#' \code{"listwise"} (default) or \code{"pairwise"}. May be
#' abbreviated.
#' @param corr.method Indicates the correlation computation method. May be one of
#' \code{"pearson"} (default), \code{"spearman"} or \code{"kendall"}.
#' May be abbreviated.
#' @param p.numeric Logical, if \code{TRUE}, the p-values are printed
#' as numbers. If \code{FALSE} (default), asterisks are used.
#'
#' @inheritParams plot_grpfrq
#' @inheritParams plot_gpt
#'
#' @return (Insisibily) returns the ggplot-object with the complete plot (\code{plot}) as well as the data frame that
#' was used for setting up the ggplot-object (\code{df}) and the original correlation matrix
#' (\code{corr.matrix}).
#'
#' @note If \code{data} is a matrix with correlation coefficients as returned by
#' the \code{\link{cor}}-function, p-values can't be computed.
#' Thus, \code{show.p} and \code{p.numeric}
#' only have an effect if \code{data} is a \code{\link{data.frame}}.
#'
#' @details Required argument is either a \code{\link{data.frame}} or a matrix with correlation coefficients
#' as returned by the \code{\link{cor}}-function. In case of ellipses, the
#' ellipses size indicates the strength of the correlation. Furthermore,
#' blue and red colors indicate positive or negative correlations, where
#' stronger correlations are darker.
#'
#' @import ggplot2
#' @importFrom tidyr gather
#' @importFrom scales brewer_pal grey_pal
#' @importFrom stats cor cor.test na.omit
#' @export
sjp.corr <- function(data,
title = NULL,
axis.labels = NULL,
sort.corr = TRUE,
decimals = 3,
na.deletion = c("listwise", "pairwise"),
corr.method = c("pearson", "spearman", "kendall"),
geom.colors = "RdBu",
wrap.title = 50,
wrap.labels = 20,
show.legend = FALSE,
legend.title = NULL,
show.values = TRUE,
show.p = TRUE,
p.numeric = FALSE) {
.Deprecated(msg = "'sjp.corr' is deprecated. Please use 'correlation::correlation()' and its related plot()-method.")
# --------------------------------------------------------
# check p-value-style option
# --------------------------------------------------------
opt <- getOption("p_zero")
if (is.null(opt) || opt == FALSE) {
p_zero <- ""
} else {
p_zero <- "0"
}
# --------------------------------------------------------
# check args
# --------------------------------------------------------
na.deletion <- match.arg(na.deletion)
corr.method <- match.arg(corr.method)
# --------------------------------------------------------
# try to automatically set labels is not passed as argument
# --------------------------------------------------------
if (is.null(axis.labels) && is.data.frame(data)) {
axis.labels <- unname(sjlabelled::get_label(data, def.value = colnames(data)))
}
# ----------------------------
# set color palette
# ----------------------------
if (is.brewer.pal(geom.colors[1])) {
geom.colors <- scales::brewer_pal(palette = geom.colors[1])(5)
} else if (geom.colors[1] == "gs") {
geom.colors <- scales::grey_pal()(5)
}
# ----------------------------
# check if user has passed a data frame
# or a pca object
# ----------------------------
if (any(class(data) == "matrix")) {
corr <- data
cpvalues <- NULL
} else {
# missing deletion corresponds to
# SPSS listwise
if (na.deletion == "listwise") {
data <- stats::na.omit(data)
corr <- stats::cor(data, method = corr.method)
}
# missing deletion corresponds to
# SPSS pairwise
else {
corr <- stats::cor(data, method = corr.method, use = "pairwise.complete.obs")
}
#---------------------------------------
# if we have a data frame as argument,
# compute p-values of significances
#---------------------------------------
computePValues <- function(df) {
cp <- c()
for (i in seq_len(ncol(df))) {
pv <- c()
for (j in seq_len(ncol(df))) {
test <- suppressWarnings(stats::cor.test(df[[i]], df[[j]],
alternative = "two.sided",
method = corr.method))
pv <- c(pv, round(test$p.value, 4))
}
cp <- rbind(cp, pv)
}
return(cp)
}
cpvalues <- computePValues(data)
}
# ----------------------------
# check if user defined labels have been supplied
# if not, use variable names from data frame
# ----------------------------
if (is.null(axis.labels)) axis.labels <- row.names(corr)
# ----------------------------
# Prepare length of title and labels
# ----------------------------
# check length of diagram title and split longer string at into new lines
if (!is.null(title)) title <- sjmisc::word_wrap(title, wrap.title)
# check length of x-axis-labels and split longer strings at into new lines
if (!is.null(axis.labels)) axis.labels <- sjmisc::word_wrap(axis.labels, wrap.labels)
# --------------------------------------------------------
# order correlations from highest to lowest correlation coefficient
# --------------------------------------------------------
if (sort.corr) {
neword <- order(corr[1, ])
orderedCorr <- corr[neword, neword]
# order variable labels as well
axis.labels <- axis.labels[neword]
if (!is.null(cpvalues)) cpvalues <- cpvalues[neword, neword]
} else {
cl <- ncol(corr)
orderedCorr <- corr[cl:1, cl:1]
axis.labels <- rev(axis.labels)
if (!is.null(cpvalues)) cpvalues <- cpvalues[cl:1, cl:1]
}
# --------------------------------------------------------
# prepare a ordering-index-column needed for the data frame
# that is passed to the ggplot
# --------------------------------------------------------
yo <- c()
for (i in seq_len(nrow(corr))) {
yo <- c(yo, rep(i, nrow(corr)))
}
# --------------------------------------------------------
# melt correlation matrix and create data frame
# --------------------------------------------------------
orderedCorr <- tidyr::gather(data.frame(orderedCorr), "var", "value",
!! seq_len(ncol(orderedCorr)), factor_key = TRUE)
# orderedCorr <- melt(orderedCorr)
if (!is.null(cpvalues))
cpvalues <- tidyr::gather(data.frame(cpvalues), "var", "value",
!! seq_len(ncol(cpvalues)), factor_key = TRUE)
# if (!is.null(cpvalues)) cpvalues <- melt(cpvalues)
# bind additional information like order for x- and y-axis
# as well as the size of plotted points
orderedCorr <- cbind(orderedCorr, ordx = seq_len(nrow(corr)), ordy = yo)
# --------------------------------------------------------
# add column with significance value
# --------------------------------------------------------
if (!is.null(cpvalues)) {
if (!p.numeric) {
cpv <- sapply(cpvalues$value, get_p_stars)
} else {
cpv <- sapply(cpvalues$value, function(x) {
if (x < 0.001)
x <- sprintf("\n(< %s.001)", p_zero)
else
x <- sub("0", p_zero, sprintf("\n(%.*f)", decimals, x))
})
}
} else {
cpv <- ""
}
orderedCorr$ps <- cpv
# --------------------------------------------------------
# set visibility of labels
# --------------------------------------------------------
if (!show.values) {
orderedCorr$val.labels <- ""
} else {
if (show.p) {
orderedCorr$val.labels <- sprintf("%.*f%s", decimals, orderedCorr$value, orderedCorr$ps)
} else {
orderedCorr$val.labels <- sprintf("%.*f", decimals, orderedCorr$value)
}
}
orderedCorr$val.labels[orderedCorr$ordx >= orderedCorr$ordy] <- NA
orderedCorr$ordx <- as.factor(orderedCorr$ordx)
orderedCorr$ordy <- as.factor(orderedCorr$ordy)
message(sprintf("Computing correlation using %s-method with %s-deletion...", corr.method, na.deletion))
# --------------------------------------------------------
# start with base plot object here
# --------------------------------------------------------
corrPlot <- ggplot(orderedCorr, aes_string(x = "ordx", y = "ordy", fill = "value", label = "val.labels")) +
geom_tile(size = 0, colour = "black") +
# fill gradient colour from distinct color brewer palette. negative correlations are dark
# red, positive corr. are dark blue, and they become lighter the closer they are to a
# correlation coefficient of zero
scale_x_discrete(labels = axis.labels, breaks = seq_len(length(axis.labels))) +
scale_y_discrete(labels = axis.labels, breaks = seq_len(length(axis.labels))) +
# set limits to (-1,1) to make sure the whole color palette is used. this
# is the colour scale for geoms
scale_fill_gradientn(colours = geom.colors, limits = c(-1,1)) +
geom_text(size = 3.5, colour = "black") +
labs(title = title, x = NULL, y = NULL)
if (show.legend)
corrPlot <- corrPlot + guides(fill = legend.title)
else
corrPlot <- corrPlot + guides(fill = "none")
corrPlot
}
|