1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
#' @title Plot normal distributions
#' @name dist_norm
#'
#' @description This function plots a simple normal distribution or a normal distribution
#' with shaded areas that indicate at which value a significant p-level
#' is reached.
#'
#' @param norm Numeric, optional. If specified, a normal distribution with \code{mean} and \code{sd}
#' is plotted and a shaded area at \code{norm} value position is plotted that
#' indicates whether or not the specified value is significant or not.
#' If both \code{norm} and \code{p} are not specified, a distribution without shaded
#' area is plotted.
#' @param mean Numeric. Mean value for normal distribution. By default 0.
#' @param sd Numeric. Standard deviation for normal distribution. By default 1.
#' @param p Numeric, optional. If specified, a normal distribution with \code{mean} and \code{sd}
#' is plotted and a shaded area at the position where the specified p-level
#' starts is plotted. If both \code{norm} and \code{p} are not specified, a distribution
#' without shaded area is plotted.
#' @param xmax Numeric, optional. Specifies the maximum x-axis-value. If not specified, the x-axis
#' ranges to a value where a p-level of 0.00001 is reached.
#' @param geom.alpha Specifies the alpha-level of the shaded area. Default is 0.7, range between 0 to 1.
#'
#' @inheritParams plot_grpfrq
#'
#' @examples
#' # a simple normal distribution
#' dist_norm()
#'
#' # a simple normal distribution with different mean and sd.
#' # note that curve looks similar to above plot, but axis range
#' # has changed.
#' dist_norm(mean = 2, sd = 4)
#'
#' # a simple normal distribution
#' dist_norm(norm = 1)
#'
#' # a simple normal distribution
#' dist_norm(p = 0.2)
#'
#' @import ggplot2
#' @importFrom stats qchisq pchisq dchisq qf pf df qnorm pnorm dnorm qt pt dt
#' @export
dist_norm <- function(norm = NULL,
mean = 0,
sd = 1,
p = NULL,
xmax = NULL,
geom.colors = NULL,
geom.alpha = 0.7) {
# --------------------------------------
# determine maximum range of x-axis.
# --------------------------------------
if (is.null(xmax)) {
if (is.null(norm)) {
n.max <- stats::qnorm(0.00001, mean, sd, lower.tail = F)
}
# --------------------------------------
# else, if we have a x-value, take into
# account all possible x-valuess that would lead
# to a theoretical p-value of 0.00001.
# --------------------------------------
else {
n.max <- norm
while (stats::pnorm(n.max, mean, sd, lower.tail = F) > 0.00001) {
n.max <- n.max + 1
}
}
}
else {
n.max <- xmax
}
# --------------------------------------
# create data frame
# --------------------------------------
mydat <- data.frame(x = seq(-n.max, n.max, length.out = 20 * n.max))
# density normal distribution
mydat$y <- stats::dnorm(mydat$x, mean, sd)
# base plot with normal-distribution
gp <- ggplot(mydat, aes_string(x = "x", y = "y")) + geom_line()
sub.df <- NULL
if (!is.null(p)) {
# plot area for indicated x-value...
sub.df <- mydat[mydat$x > stats::qnorm(p, mean, sd, lower.tail = F), ]
}
else if (!is.null(norm)) {
# resp. for p-value...
sub.df <- mydat[mydat$x > norm, ]
}
if (!is.null(sub.df)) {
sub.df$p.level <- ifelse(sub.df$x > stats::qnorm(0.05, mean, sd, lower.tail = F), "sig", "non-sig")
cs <- stats::qnorm(0.05, mean, sd, lower.tail = F)
gp <- gp +
geom_ribbon(data = sub.df,
aes_string(ymax = "y", fill = "p.level"),
ymin = 0,
alpha = geom.alpha) +
annotate("text",
label = sprintf("x = %.2f", cs),
x = cs,
y = 0,
vjust = 1.3)
# add limit of p-value
if (!is.null(norm)) {
pv <- stats::pnorm(norm, mean, sd, lower.tail = F)
if (pv >= 0.05) {
gp <- gp +
annotate("text",
label = sprintf("p = %.2f", pv),
x = norm,
y = 0,
hjust = -0.1,
vjust = -0.5,
angle = 90)
}
}
}
gp <- sj.setGeomColors(gp, geom.colors, pal.len = 2, labels = c("p > 5%", "p < 0.05"))
gp <- gp + ylab(NULL) + xlab(NULL)
print(gp)
}
#' @title Plot chi-squared distributions
#' @name dist_chisq
#'
#' @description This function plots a simple chi-squared distribution or a chi-squared distribution
#' with shaded areas that indicate at which chi-squared value a significant p-level
#' is reached.
#'
#' @param chi2 Numeric, optional. If specified, a chi-squared distribution with \code{deg.f} degrees
#' of freedom is plotted and a shaded area at \code{chi2} value position is plotted that
#' indicates whether or not the specified value is significant or not.
#' If both \code{chi2} and \code{p} are not specified, a distribution without shaded
#' area is plotted.
#' @param deg.f Numeric. The degrees of freedom for the chi-squared distribution. Needs to
#' be specified.
#' @param p Numeric, optional. If specified, a chi-squared distribution with \code{deg.f} degrees
#' of freedom is plotted and a shaded area at the position where the specified p-level
#' starts is plotted. If both \code{chi2} and \code{p} are not specified, a distribution
#' without shaded area is plotted.
#' @param xmax Numeric, optional. Specifies the maximum x-axis-value. If not specified, the x-axis
#' ranges to a value where a p-level of 0.00001 is reached.
#'
#' @inheritParams dist_norm
#' @inheritParams plot_grpfrq
#'
#' @examples
#' # a simple chi-squared distribution
#' # for 6 degrees of freedom
#' dist_chisq(deg.f = 6)
#'
#' # a chi-squared distribution for 6 degrees of freedom,
#' # and a shaded area starting at chi-squared value of ten.
#' # With a df of 6, a chi-squared value of 12.59 would be "significant",
#' # thus the shaded area from 10 to 12.58 is filled as "non-significant",
#' # while the area starting from chi-squared value 12.59 is filled as
#' # "significant"
#' dist_chisq(chi2 = 10, deg.f = 6)
#'
#' # a chi-squared distribution for 6 degrees of freedom,
#' # and a shaded area starting at that chi-squared value, which has
#' # a p-level of about 0.125 (which equals a chi-squared value of about 10).
#' # With a df of 6, a chi-squared value of 12.59 would be "significant",
#' # thus the shaded area from 10 to 12.58 (p-level 0.125 to p-level 0.05)
#' # is filled as "non-significant", while the area starting from chi-squared
#' # value 12.59 (p-level < 0.05) is filled as "significant".
#' dist_chisq(p = 0.125, deg.f = 6)
#'
#' @import ggplot2
#' @export
dist_chisq <- function(chi2 = NULL,
deg.f = NULL,
p = NULL,
xmax = NULL,
geom.colors = NULL,
geom.alpha = 0.7) {
# --------------------------------------
# check parameters
# --------------------------------------
if (is.null(deg.f)) {
warning("Degrees of freedom ('deg.f') needs to be specified.", call. = F)
return(invisible(NULL))
}
# --------------------------------------
# determine maximum range of x-axis. if we have
# p-value but no chi2-value, distribution should range until
# a theoretical p-value of 0.00001 is reached. this should
# cover all possible (and visible) chi2-values
# --------------------------------------
if (is.null(xmax)) {
if (is.null(chi2)) {
chisq.max <- stats::qchisq(0.00001, deg.f, lower.tail = F)
}
# --------------------------------------
# else, if we have a chi2-value, take into
# account all possible chi2-values that would lead
# to a theoretical p-value of 0.00001.
# --------------------------------------
else {
chisq.max <- chi2
while (stats::pchisq(chisq.max, deg.f, lower.tail = F) > 0.00001) {
chisq.max <- chisq.max + 1
}
}
}
else {
chisq.max <- xmax
}
# --------------------------------------
# create data frame
# --------------------------------------
mydat <- data.frame(x = seq(0, chisq.max, length.out = 10 * chisq.max))
# density distribution of chi2
mydat$y <- stats::dchisq(mydat$x, deg.f)
# base plot with chi2-distribution
gp <- ggplot(mydat, aes_string(x = "x", y = "y")) + geom_line()
sub.df <- NULL
if (!is.null(p)) {
# plot area for indicated chi2-value...
sub.df <- mydat[mydat$x > stats::qchisq(p, deg.f, lower.tail = F), ]
}
else if (!is.null(chi2)) {
# resp. for p-value...
sub.df <- mydat[mydat$x > chi2, ]
}
if (!is.null(sub.df)) {
sub.df$p.level <- ifelse(sub.df$x > stats::qchisq(0.05, deg.f, lower.tail = F), "sig", "non-sig")
cs <- stats::qchisq(0.05, deg.f, lower.tail = F)
gp <- gp +
geom_ribbon(data = sub.df,
aes_string(ymax = "y", fill = "p.level"),
ymin = 0,
alpha = geom.alpha) +
annotate("text",
label = as.character(as.expression(substitute(chi^2 == c2, list(c2 = sprintf("%.2f", cs))))),
parse = TRUE,
x = cs,
y = 0,
vjust = 1.2)
# add limit of p-value
if (!is.null(chi2)) {
pv <- stats::pchisq(chi2, deg.f, lower.tail = F)
if (pv >= 0.05) {
gp <- gp +
annotate("text",
label = sprintf("p = %.2f", pv),
x = chi2,
y = 0,
hjust = -0.1,
vjust = -0.5,
angle = 90)
}
}
}
gp <- sj.setGeomColors(gp, geom.colors, pal.len = 2, labels = c("p > 5%", "p < 0.05"))
gp <- gp + ylab(NULL) + xlab("chi-squared value")
print(gp)
}
#' @title Plot F distributions
#' @name dist_f
#'
#' @description This function plots a simple F distribution or an F distribution
#' with shaded areas that indicate at which F value a significant p-level
#' is reached.
#'
#' @param f Numeric, optional. If specified, an F distribution with \code{deg.f1} and \code{deg.f2} degrees
#' of freedom is plotted and a shaded area at \code{f} value position is plotted that
#' indicates whether or not the specified value is significant or not.
#' If both \code{f} and \code{p} are not specified, a distribution without shaded
#' area is plotted.
#' @param deg.f1 Numeric. The first degrees of freedom for the F distribution. Needs to
#' be specified.
#' @param deg.f2 Numeric. The second degrees of freedom for the F distribution. Needs to
#' be specified.
#' @param p Numeric, optional. If specified, a F distribution with \code{deg.f1} and \code{deg.f2} degrees
#' of freedom is plotted and a shaded area at the position where the specified p-level
#' starts is plotted. If both \code{f} and \code{p} are not specified, a distribution
#' without shaded area is plotted.
#' @param xmax Numeric, optional. Specifies the maximum x-axis-value. If not specified, the x-axis
#' ranges to a value where a p-level of 0.00001 is reached.
#'
#' @inheritParams dist_norm
#' @inheritParams plot_grpfrq
#'
#' @examples
#' # a simple F distribution for 6 and 45 degrees of freedom
#' dist_f(deg.f1 = 6, deg.f2 = 45)
#'
#' # F distribution for 6 and 45 degrees of freedom,
#' # and a shaded area starting at F value of two.
#' # F-values equal or greater than 2.31 are "significant"
#' dist_f(f = 2, deg.f1 = 6, deg.f2 = 45)
#'
#' # F distribution for 6 and 45 degrees of freedom,
#' # and a shaded area starting at a p-level of 0.2
#' # (F-Value about 1.5).
#' dist_f(p = 0.2, deg.f1 = 6, deg.f2 = 45)
#'
#' @import ggplot2
#' @export
dist_f <- function(f = NULL,
deg.f1 = NULL,
deg.f2 = NULL,
p = NULL,
xmax = NULL,
geom.colors = NULL,
geom.alpha = 0.7) {
# --------------------------------------
# check parameters
# --------------------------------------
if (is.null(deg.f1) || is.null(deg.f2)) {
warning("Both degrees of freedom ('deg.f1' and 'deg.f2') needs to be specified.", call. = F)
return(invisible(NULL))
}
# --------------------------------------
# determine maximum range of x-axis. if we have
# p-value but no f-value, distribution should range until
# a theoretical p-value of 0.00001 is reached. this should
# cover all possible (and visible) f-values
# --------------------------------------
if (is.null(xmax)) {
if (is.null(f)) {
f.max <- stats::qf(0.00001, deg.f1, deg.f2, lower.tail = F)
# --------------------------------------
# else, if we have a f-value, take into
# account all possible f-values that would lead
# to a theoretical p-value of 0.00001.
# --------------------------------------
} else {
f.max <- f
while (stats::pf(f.max, deg.f1, deg.f2, lower.tail = F) > 0.00001) f.max <- f.max + 1
}
} else {
f.max <- xmax
}
# --------------------------------------
# create data frame
# --------------------------------------
mydat <- data.frame(x = seq(0, f.max, length.out = 30 * f.max))
# density distribution of f
mydat$y <- stats::df(mydat$x, deg.f1, deg.f2)
# base plot with f-distribution
gp <- ggplot(mydat, aes_string(x = "x", y = "y")) + geom_line()
sub.df <- NULL
if (!is.null(p)) {
# plot area for indicated f-value...
sub.df <- mydat[mydat$x > stats::qf(p, deg.f1, deg.f2, lower.tail = F), ]
} else if (!is.null(f)) {
# resp. for p-value...
sub.df <- mydat[mydat$x > f, ]
}
if (!is.null(sub.df)) {
sub.df$p.level <- ifelse(sub.df$x > stats::qf(0.05, deg.f1, deg.f2, lower.tail = F), "sig", "non-sig")
fv <- stats::qf(0.05, deg.f1, deg.f2, lower.tail = F)
gp <- gp +
geom_ribbon(data = sub.df,
aes_string(ymax = "y", fill = "p.level"),
ymin = 0,
alpha = geom.alpha) +
annotate("text",
label = sprintf("F = %.2f", fv),
x = fv,
y = 0,
vjust = 1.3)
# add limit of p-value
if (!is.null(f)) {
pv <- stats::pf(f, deg.f1, deg.f2, lower.tail = F)
if (pv >= 0.05) {
gp <- gp +
annotate("text",
label = sprintf("p = %.2f", pv),
x = f,
y = 0,
hjust = -0.1,
vjust = -0.5,
angle = 90)
}
}
}
gp <- sj.setGeomColors(gp, geom.colors, pal.len = 2, labels = c("p > 5%", "p < 0.05"))
gp <- gp + ylab(NULL) + xlab("F-value")
print(gp)
}
#' @title Plot t-distributions
#' @name dist_t
#'
#' @description This function plots a simple t-distribution or a t-distribution
#' with shaded areas that indicate at which t-value a significant p-level
#' is reached.
#'
#' @param t Numeric, optional. If specified, a t-distribution with \code{deg.f} degrees
#' of freedom is plotted and a shaded area at \code{t} value position is plotted that
#' indicates whether or not the specified value is significant or not.
#' If both \code{t} and \code{p} are not specified, a distribution without shaded
#' area is plotted.
#' @param deg.f Numeric. The degrees of freedom for the t-distribution. Needs to
#' be specified.
#' @param p Numeric, optional. If specified, a t-distribution with \code{deg.f} degrees
#' of freedom is plotted and a shaded area at the position where the specified p-level
#' starts is plotted. If both \code{t} and \code{p} are not specified, a distribution
#' without shaded area is plotted.
#' @param xmax Numeric, optional. Specifies the maximum x-axis-value. If not specified, the x-axis
#' ranges to a value where a p-level of 0.00001 is reached.
#'
#' @inheritParams dist_norm
#' @inheritParams plot_grpfrq
#'
#' @examples
#' # a simple t-distribution
#' # for 6 degrees of freedom
#' dist_t(deg.f = 6)
#'
#' # a t-distribution for 6 degrees of freedom,
#' # and a shaded area starting at t-value of one.
#' # With a df of 6, a t-value of 1.94 would be "significant".
#' dist_t(t = 1, deg.f = 6)
#'
#' # a t-distribution for 6 degrees of freedom,
#' # and a shaded area starting at p-level of 0.4
#' # (t-value of about 0.26).
#' dist_t(p = 0.4, deg.f = 6)
#'
#' @import ggplot2
#' @export
dist_t <- function(t = NULL,
deg.f = NULL,
p = NULL,
xmax = NULL,
geom.colors = NULL,
geom.alpha = 0.7) {
# --------------------------------------
# check parameters
# --------------------------------------
if (is.null(deg.f)) {
warning("Degrees of freedom ('deg.f') needs to be specified.", call. = F)
return(invisible(NULL))
}
# --------------------------------------
# determine maximum range of x-axis. if we have
# p-value but no t-value, distribution should range until
# a theoretical p-value of 0.00001 is reached. this should
# cover all possible (and visible) t-values
# --------------------------------------
if (is.null(xmax)) {
if (is.null(t)) {
t.max <- stats::qt(0.00001, deg.f, lower.tail = F)
}
# --------------------------------------
# else, if we have a t-value, take into
# account all possible t-values that would lead
# to a theoretical p-value of 0.00001.
# --------------------------------------
else {
t.max <- t
while (stats::pt(t.max, deg.f, lower.tail = F) > 0.00001) {
t.max <- t.max + 1
}
}
}
else {
t.max <- xmax
}
# --------------------------------------
# create data frame
# --------------------------------------
mydat <- data.frame(x = seq(-t.max, t.max, length.out = 20 * t.max))
# density distribution of t
mydat$y <- stats::dt(mydat$x, deg.f)
# base plot with t-distribution
gp <- ggplot(mydat, aes_string(x = "x", y = "y")) + geom_line()
sub.df <- NULL
if (!is.null(p)) {
# plot area for indicated t-value...
sub.df <- mydat[mydat$x > stats::qt(p, deg.f, lower.tail = F), ]
}
else if (!is.null(t)) {
# resp. for p-value...
sub.df <- mydat[mydat$x > t, ]
}
if (!is.null(sub.df)) {
sub.df$p.level <- ifelse(sub.df$x > stats::qt(0.05, deg.f, lower.tail = F), "sig", "non-sig")
tv <- stats::qt(0.05, deg.f, lower.tail = F)
gp <- gp +
geom_ribbon(data = sub.df,
aes_string(ymax = "y", fill = "p.level"),
ymin = 0,
alpha = geom.alpha) +
annotate("text",
label = sprintf("t = %.2f", tv),
x = tv,
y = 0,
vjust = 1.3)
# add limit of p-value
if (!is.null(t)) {
pv <- stats::pt(t, deg.f, lower.tail = F)
if (pv >= 0.05) {
gp <- gp +
annotate("text",
label = sprintf("p = %.2f", pv),
x = t,
y = 0,
hjust = -0.1,
vjust = -0.5,
angle = 90)
}
}
}
gp <- sj.setGeomColors(gp, geom.colors, pal.len = 2, labels = c("p > 5%", "p < 0.05"))
gp <- gp + ylab(NULL) + xlab("t-value")
print(gp)
}
|