File: tab_itemscale.R

package info (click to toggle)
r-cran-sjplot 2.8.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,596 kB
  • sloc: sh: 13; makefile: 2
file content (369 lines) | stat: -rw-r--r-- 16,678 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#' @title Summary of item analysis of an item scale as HTML table
#' @name tab_itemscale
#'
#' @description This function performs an item analysis with certain statistics that are
#'                useful for scale or index development. The resulting tables are shown in the
#'                viewer pane resp. webbrowser or can be saved as file. Following statistics are
#'                computed for each item of a data frame:
#'                \itemize{
#'                  \item percentage of missing values
#'                  \item mean value
#'                  \item standard deviation
#'                  \item skew
#'                  \item item difficulty
#'                  \item item discrimination
#'                  \item Cronbach's Alpha if item was removed from scale
#'                  \item mean (or average) inter-item-correlation
#'                }
#'                Optional, following statistics can be computed as well:
#'                \itemize{
#'                  \item kurstosis
#'                  \item Shapiro-Wilk Normality Test
#'                }
#'                If \code{factor.groups} is not \code{NULL}, the data frame \code{df} will be
#'                splitted into groups, assuming that \code{factor.groups} indicate those columns
#'                of the data frame that belong to a certain factor (see return value of function \code{\link{tab_pca}}
#'                as example for retrieving factor groups for a scale and see examples for more details).
#'
#' @param df A data frame with items.
#' @param factor.groups If not \code{NULL}, \code{df} will be splitted into sub-groups,
#'          where the item analysis is carried out for each of these groups. Must be a vector of same
#'          length as \code{ncol(df)}, where each item in this vector represents the group number of
#'          the related columns of \code{df}. If \code{factor.groups = "auto"}, a principal
#'          component analysis with Varimax rotation is performed, and the resulting
#'          groups for the components are used as group index. See 'Examples'.
#' @param factor.groups.titles Titles for each factor group that will be used as table caption for each
#'          component-table. Must be a character vector of same length as \code{length(unique(factor.groups))}.
#'          Default is \code{"auto"}, which means that each table has a standard caption \emph{Component x}.
#'          Use \code{NULL} to suppress table captions.
#' @param scale Logical, if \code{TRUE}, the data frame's vectors will be scaled when calculating the
#'          Cronbach's Alpha value (see \code{\link[performance]{item_reliability}}). Recommended, when
#'          the variables have different measures / scales.
#' @param min.valid.rowmean Minimum amount of valid values to compute row means for index scores.
#'          Default is 2, i.e. the return values \code{index.scores} and \code{df.index.scores} are
#'          computed for those items that have at least \code{min.valid.rowmean} per case (observation, or
#'          technically, row). See \code{mean_n} for details.
#' @param show.shapiro Logical, if \code{TRUE}, a Shapiro-Wilk normality test is computed for each item.
#'          See \code{\link{shapiro.test}} for details.
#' @param show.kurtosis Logical, if \code{TRUE}, the kurtosis for each item will also be shown (see \code{\link[psych]{kurtosi}}
#'          and \code{\link[psych]{describe}} in the \code{psych}-package for more details.
#' @param show.corr.matrix Logical, if \code{TRUE} (default), a correlation matrix of each component's
#'          index score is shown. Only applies if \code{factor.groups} is not \code{NULL} and \code{df} has
#'          more than one group. First, for each case (df's row), the sum of all variables (df's columns) is
#'          scaled (using the \code{\link{scale}}-function) and represents a "total score" for
#'          each component (a component is represented by each group of \code{factor.groups}).
#'          After that, each case (df's row) has a scales sum score for each component.
#'          Finally, a correlation of these "scale sum scores" is computed.
#'
#' @inheritParams tab_model
#' @inheritParams view_df
#' @inheritParams tab_xtab
#' @inheritParams tab_df
#'
#' @return Invisibly returns
#'         \itemize{
#'          \item \code{df.list}: List of data frames with the item analysis for each sub.group (or complete, if \code{factor.groups} was \code{NULL})
#'          \item \code{index.scores}: A data frame with of standardized scale / index scores for each case (mean value of all scale items for each case) for each sub-group.
#'          \item \code{ideal.item.diff}: List of vectors that indicate the ideal item difficulty for each item in each sub-group. Item difficulty only differs when items have different levels.
#'          \item \code{cronbach.values}: List of Cronbach's Alpha values for the overall item scale for each sub-group.
#'          \item \code{knitr.list}: List of html-tables with inline-css for use with knitr for each table (sub-group)
#'          \item \code{knitr}: html-table of all complete output with inline-css for use with knitr
#'          \item \code{complete.page}: Complete html-output.
#'          }
#'          If \code{factor.groups = NULL}, each list contains only one elment, since just one
#'          table is printed for the complete scale indicated by \code{df}. If \code{factor.groups}
#'          is a vector of group-index-values, the lists contain elements for each sub-group.
#'
#' @note \itemize{
#'          \item The \emph{Shapiro-Wilk Normality Test} (see column \code{W(p)}) tests if an item has a distribution that is significantly different from normal.
#'          \item \emph{Item difficulty} should range between 0.2 and 0.8. Ideal value is \code{p+(1-p)/2} (which mostly is between 0.5 and 0.8).
#'          \item For \emph{item discrimination}, acceptable values are 0.20 or higher; the closer to 1.00 the better. See \code{\link[performance]{item_reliability}} for more details.
#'          \item In case the total \emph{Cronbach's Alpha} value is below the acceptable cut-off of 0.7 (mostly if an index has few items), the \emph{mean inter-item-correlation} is an alternative measure to indicate acceptability. Satisfactory range lies between 0.2 and 0.4. See also \code{\link[performance]{item_intercor}}.
#'        }
#'
#' @references \itemize{
#'              \item Jorion N, Self B, James K, Schroeder L, DiBello L, Pellegrino J (2013) Classical Test Theory Analysis of the Dynamics Concept Inventory. (\href{https://www.academia.edu/4104752/Classical_Test_Theory_Analysis_of_the_Dynamics_Concept_Inventory}{web})
#'              \item Briggs SR, Cheek JM (1986) The role of factor analysis in the development and evaluation of personality scales. Journal of Personality, 54(1), 106-148. doi: 10.1111/j.1467-6494.1986.tb00391.x
#'              \item McLean S et al. (2013) Stigmatizing attitudes and beliefs about bulimia nervosa: Gender, age, education and income variability in a community sample. International Journal of Eating Disorders. doi: 10.1002/eat.22227
#'              \item Trochim WMK (2008) Types of Reliability.
#'             }
#'
#' @examples
#' # Data from the EUROFAMCARE sample dataset
#' library(sjmisc)
#' library(sjlabelled)
#' data(efc)
#'
#' # retrieve variable and value labels
#' varlabs <- get_label(efc)
#'
#' # recveive first item of COPE-index scale
#' start <- which(colnames(efc) == "c82cop1")
#' # recveive last item of COPE-index scale
#' end <- which(colnames(efc) == "c90cop9")
#'
#' # create data frame with COPE-index scale
#' mydf <- data.frame(efc[, start:end])
#' colnames(mydf) <- varlabs[start:end]
#'
#' \dontrun{
#' if (interactive()) {
#'   tab_itemscale(mydf)
#'
#'   # auto-detection of labels
#'   tab_itemscale(efc[, start:end])
#'
#'   # Compute PCA on Cope-Index, and perform a
#'   # item analysis for each extracted factor.
#'   indices <- tab_pca(mydf)$factor.index
#'   tab_itemscale(mydf, factor.groups = indices)
#'
#'   # or, equivalent
#'   tab_itemscale(mydf, factor.groups = "auto")
#' }}
#' @export
tab_itemscale <- function(df,
                             factor.groups = NULL,
                             factor.groups.titles = "auto",
                             scale = FALSE,
                             min.valid.rowmean = 2,
                             alternate.rows = TRUE,
                             sort.column = NULL,
                             show.shapiro = FALSE,
                             show.kurtosis = FALSE,
                             show.corr.matrix = TRUE,
                             CSS = NULL,
                             encoding = NULL,
                             file = NULL,
                             use.viewer = TRUE,
                             remove.spaces = TRUE) {
  # check encoding
  encoding <- get.encoding(encoding, df)

  # convert ordered factors to numeric
  ordered_vars <- sapply(df, is.ordered)
  if (any(ordered_vars)) df[ordered_vars] <- sjlabelled::as_numeric(df[ordered_vars])

  # Warn if factors are used
  factor_vars <- sapply(df, is.factor)
  if (any(factor_vars)) {
    df[factor_vars] <- sjlabelled::as_numeric(df[factor_vars])
    warning("At least one variable is of type factor, please check if the factor levels are ordered correctly.")
  }

  # auto-detect variable labels
  varlabels <- sjlabelled::get_label(df, def.value = colnames(df))
  colnames(df) <- varlabels

  # check whether we have (factor) groups
  # for data frame
  if (is.null(factor.groups))
    factor.groups <- rep(1, length.out = ncol(df))
  else if (inherits(factor.groups, "parameters_pca"))
    factor.groups <- parameters::closest_component(factor.groups)
  else if (length(factor.groups) == 1 && factor.groups == "auto") {
    pr <- parameters::principal_components(df, rotation = "varimax")
    factor.groups <- parameters::closest_component(pr)
  }

  # data frame with data from item-analysis-output-table
  df.ia <- list()

  # component's correlation matrix
  df.comcor <- list()
  diff.ideal.list <- list()
  index.scores <- list()

  # cronbach's alpha values
  cronbach.total <- list()

  # mean inter-item-correlation values
  mic.total <- list()

  # retrieve unique factor / group index values
  findex <- sort(unique(factor.groups))

  # set titles
  if (!is.null(factor.groups.titles) && (factor.groups.titles[1] == "auto" || length(factor.groups.titles) != length(findex))) {
    factor.groups.titles <- sprintf("Component %i", seq_along(findex))
  }

  # iterate all sub-scales (groups)
  for (i in seq_len(length(findex))) {

    # retrieve sub-scale
    df.sub <- subset(df, select = which(factor.groups == findex[i]))

    # remember item (column) names for return value
    # return value gets column names of initial data frame
    df.names <- colnames(df)[which(factor.groups == findex[i])]

    # retrieve missing percentage for each item
    missings.prz <- apply(df.sub, 2, function(x) round(100 * sum(is.na(x)) / length(x), 2))

    # item difficulty
    difficulty <- apply(df.sub, 2, function(x) {
      x <- stats::na.omit(x)
      round(sum(x) / (max(x) * length(x)), 2)
      })

    # ideal item difficulty
    fun.diff.ideal <- function(x) {
      p <- 1 / max(x, na.rm = TRUE)
      round(p + (1 - p) / 2, 2)
    }

    diff.ideal <- apply(df.sub, 2, fun.diff.ideal)

    # get statistics
    dstat <- sjmisc::descr(df.sub)
    reli <- performance::item_reliability(df.sub, standardize = scale)

    # get index score value, by retrieving the row mean
    item.score <- datawizard::row_means(df.sub, min_valid = min.valid.rowmean)

    # store scaled values of each item's total score
    # to compute correlation coefficients between identified components
    df.subcc <- subset(df, select = which(factor.groups == findex[i]))
    comcor <- sjmisc::std(rowSums(df.subcc), append = FALSE)

    # check if we have valid return values from reliability test.
    # In case df had less than 3 columns, NULL is returned
    if (!is.null(reli)) {
      alpha <- reli$alpha_if_deleted
      itemdis <- reli$item_discrimination
    } else {
      alpha <- as.factor(NA)
      itemdis <- as.factor(NA)
    }

    # create dummy data frame
    df.dummy <- data_frame(cbind(
      sprintf("%.2f %%", missings.prz),
      round(dstat$mean, 2),
      round(dstat$sd, 2),
      round(dstat$skew, 2)
    ))

    df.colnames <- c("Missings", "Mean", "SD", "Skew")

    # include kurtosis statistics
    if (show.kurtosis) {
      df.dummy <- data_frame(cbind(df.dummy, round(as.numeric(datawizard::kurtosis(df.sub)), 2)))
      df.colnames <- c(df.colnames, "Kurtosis")
    }

    # include shapiro-wilk normality test
    if (show.shapiro) {
      shaptest.w <- apply(df.sub, 2, function(x) stats::shapiro.test(x)$statistic)
      shaptest.p <- apply(df.sub, 2, function(x) stats::shapiro.test(x)$p.value)
      df.dummy <- data_frame(cbind(df.dummy, sprintf("%.2f (%.3f)", shaptest.w, shaptest.p)))
      df.colnames <- c(df.colnames, "W(p)")
    }

    df.dummy <- data.frame(cbind(df.dummy, difficulty, itemdis, alpha))
    df.colnames <- c(df.colnames, "Item Difficulty", "Item Discrimination", "&alpha; if deleted")

    # set names of data frame
    colnames(df.dummy) <- df.colnames
    rownames(df.dummy) <- df.names

    # add results to return list
    df.ia[[length(df.ia) + 1]] <- df.dummy
    diff.ideal.list[[length(diff.ideal.list) + 1]] <- diff.ideal
    index.scores[[length(index.scores) + 1]] <- item.score
    cronbach.total[[length(cronbach.total) + 1]] <- performance::cronbachs_alpha(df.sub)
    df.comcor[[length(df.comcor) + 1]] <- comcor

    # Mean-interitem-corelation
    mic.total[[length(mic.total) + 1]] <- performance::item_intercor(df.sub)
  }

  # create data frame with index scores,
  # including missings
  df.index.scores <- as.data.frame(index.scores)

  # proper col names
  colnames(df.index.scores) <- sprintf("Score%i", seq_len(ncol(df.index.scores)))

  footns <- purrr::map2_chr(mic.total, cronbach.total, ~ sprintf(
      "Mean inter-item-correlation=%.3f &middot; Cronbach's &alpha;=%.3f", .x, .y
    ))

  if (is.null(CSS)) CSS <- list(css.firsttablecol = '+text-align:left;')

  # get html-table from data frame
  html <- tab_dfs(
    x = df.ia,
    titles = factor.groups.titles,
    col.header = NULL,
    alternate.rows = alternate.rows,
    CSS = CSS,
    sort.column = sort.column,
    show.type = FALSE,
    show.rownames = TRUE,
    use.viewer = TRUE,
    encoding = encoding,
    show.footnote = TRUE,
    footnotes = footns,
    file = file
  )

  html2 <- NULL

  # show component correlation table
  if (show.corr.matrix) {

    # check if we have enough components
    if (length(df.comcor) > 1) {

      # copy all component correlation values to a data frame
      df.cc <- data.frame(matrix(unlist(df.comcor),
                                 nrow = nrow(df),
                                 byrow = FALSE))

      # give proper columm names
      colnames(df.cc) <- sprintf("Component %i", seq_len(ncol(df.cc)))

      # compute correlation table, store html result
      html2 <- tab_corr(
        df.cc,
        na.deletion = "listwise",
        p.numeric = TRUE,
        triangle = "lower",
        string.diag = sprintf("&alpha;=%.3f", unlist(cronbach.total)),
        encoding = encoding
      )

    }
  }

  if (!is.null(html2)) {
    html$knitr <- paste0(html$knitr, "<p>&nbsp;</p>", html2$knitr)
    html$page.content <- paste0(html$page.content, "<p>&nbsp;</p>", html2$page.content)
    html$page.style <- paste0(html$page.style, html2$page.style)
    html$page.complete <-
      sprintf(
        "<html>\n<head>\n<meta http-equiv=\"Content-type\" content=\"text/html;charset=%s\">\n%s\n</head>\n<body>\n%s\n</body></html>",
        encoding,
        html$page.style,
        html$page.content
      )
  }

  html$df.list <- df.ia
  html$index.scores <- df.index.scores
  html$cronbach.values <- cronbach.total
  html$ideal.item.diff <- diff.ideal.list

  sjlabelled::set_label(html$index.scores) <- purrr::map2_chr(mic.total, cronbach.total, ~ sprintf(
    "Mean icc=%.3f; Cronbach's Alpha=%.3f", .x, .y
  ))

  html
}


#' @rdname tab_itemscale
#' @export
sjt.itemanalysis <- tab_itemscale