1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
#' @title Summary of item analysis of an item scale as HTML table
#' @name tab_itemscale
#'
#' @description This function performs an item analysis with certain statistics that are
#' useful for scale or index development. The resulting tables are shown in the
#' viewer pane resp. webbrowser or can be saved as file. Following statistics are
#' computed for each item of a data frame:
#' \itemize{
#' \item percentage of missing values
#' \item mean value
#' \item standard deviation
#' \item skew
#' \item item difficulty
#' \item item discrimination
#' \item Cronbach's Alpha if item was removed from scale
#' \item mean (or average) inter-item-correlation
#' }
#' Optional, following statistics can be computed as well:
#' \itemize{
#' \item kurstosis
#' \item Shapiro-Wilk Normality Test
#' }
#' If \code{factor.groups} is not \code{NULL}, the data frame \code{df} will be
#' splitted into groups, assuming that \code{factor.groups} indicate those columns
#' of the data frame that belong to a certain factor (see return value of function \code{\link{tab_pca}}
#' as example for retrieving factor groups for a scale and see examples for more details).
#'
#' @param df A data frame with items.
#' @param factor.groups If not \code{NULL}, \code{df} will be splitted into sub-groups,
#' where the item analysis is carried out for each of these groups. Must be a vector of same
#' length as \code{ncol(df)}, where each item in this vector represents the group number of
#' the related columns of \code{df}. If \code{factor.groups = "auto"}, a principal
#' component analysis with Varimax rotation is performed, and the resulting
#' groups for the components are used as group index. See 'Examples'.
#' @param factor.groups.titles Titles for each factor group that will be used as table caption for each
#' component-table. Must be a character vector of same length as \code{length(unique(factor.groups))}.
#' Default is \code{"auto"}, which means that each table has a standard caption \emph{Component x}.
#' Use \code{NULL} to suppress table captions.
#' @param scale Logical, if \code{TRUE}, the data frame's vectors will be scaled when calculating the
#' Cronbach's Alpha value (see \code{\link[performance]{item_reliability}}). Recommended, when
#' the variables have different measures / scales.
#' @param min.valid.rowmean Minimum amount of valid values to compute row means for index scores.
#' Default is 2, i.e. the return values \code{index.scores} and \code{df.index.scores} are
#' computed for those items that have at least \code{min.valid.rowmean} per case (observation, or
#' technically, row). See \code{mean_n} for details.
#' @param show.shapiro Logical, if \code{TRUE}, a Shapiro-Wilk normality test is computed for each item.
#' See \code{\link{shapiro.test}} for details.
#' @param show.kurtosis Logical, if \code{TRUE}, the kurtosis for each item will also be shown (see \code{\link[psych]{kurtosi}}
#' and \code{\link[psych]{describe}} in the \code{psych}-package for more details.
#' @param show.corr.matrix Logical, if \code{TRUE} (default), a correlation matrix of each component's
#' index score is shown. Only applies if \code{factor.groups} is not \code{NULL} and \code{df} has
#' more than one group. First, for each case (df's row), the sum of all variables (df's columns) is
#' scaled (using the \code{\link{scale}}-function) and represents a "total score" for
#' each component (a component is represented by each group of \code{factor.groups}).
#' After that, each case (df's row) has a scales sum score for each component.
#' Finally, a correlation of these "scale sum scores" is computed.
#'
#' @inheritParams tab_model
#' @inheritParams view_df
#' @inheritParams tab_xtab
#' @inheritParams tab_df
#'
#' @return Invisibly returns
#' \itemize{
#' \item \code{df.list}: List of data frames with the item analysis for each sub.group (or complete, if \code{factor.groups} was \code{NULL})
#' \item \code{index.scores}: A data frame with of standardized scale / index scores for each case (mean value of all scale items for each case) for each sub-group.
#' \item \code{ideal.item.diff}: List of vectors that indicate the ideal item difficulty for each item in each sub-group. Item difficulty only differs when items have different levels.
#' \item \code{cronbach.values}: List of Cronbach's Alpha values for the overall item scale for each sub-group.
#' \item \code{knitr.list}: List of html-tables with inline-css for use with knitr for each table (sub-group)
#' \item \code{knitr}: html-table of all complete output with inline-css for use with knitr
#' \item \code{complete.page}: Complete html-output.
#' }
#' If \code{factor.groups = NULL}, each list contains only one elment, since just one
#' table is printed for the complete scale indicated by \code{df}. If \code{factor.groups}
#' is a vector of group-index-values, the lists contain elements for each sub-group.
#'
#' @note \itemize{
#' \item The \emph{Shapiro-Wilk Normality Test} (see column \code{W(p)}) tests if an item has a distribution that is significantly different from normal.
#' \item \emph{Item difficulty} should range between 0.2 and 0.8. Ideal value is \code{p+(1-p)/2} (which mostly is between 0.5 and 0.8).
#' \item For \emph{item discrimination}, acceptable values are 0.20 or higher; the closer to 1.00 the better. See \code{\link[performance]{item_reliability}} for more details.
#' \item In case the total \emph{Cronbach's Alpha} value is below the acceptable cut-off of 0.7 (mostly if an index has few items), the \emph{mean inter-item-correlation} is an alternative measure to indicate acceptability. Satisfactory range lies between 0.2 and 0.4. See also \code{\link[performance]{item_intercor}}.
#' }
#'
#' @references \itemize{
#' \item Jorion N, Self B, James K, Schroeder L, DiBello L, Pellegrino J (2013) Classical Test Theory Analysis of the Dynamics Concept Inventory. (\href{https://www.academia.edu/4104752/Classical_Test_Theory_Analysis_of_the_Dynamics_Concept_Inventory}{web})
#' \item Briggs SR, Cheek JM (1986) The role of factor analysis in the development and evaluation of personality scales. Journal of Personality, 54(1), 106-148. doi: 10.1111/j.1467-6494.1986.tb00391.x
#' \item McLean S et al. (2013) Stigmatizing attitudes and beliefs about bulimia nervosa: Gender, age, education and income variability in a community sample. International Journal of Eating Disorders. doi: 10.1002/eat.22227
#' \item Trochim WMK (2008) Types of Reliability.
#' }
#'
#' @examples
#' # Data from the EUROFAMCARE sample dataset
#' library(sjmisc)
#' library(sjlabelled)
#' data(efc)
#'
#' # retrieve variable and value labels
#' varlabs <- get_label(efc)
#'
#' # recveive first item of COPE-index scale
#' start <- which(colnames(efc) == "c82cop1")
#' # recveive last item of COPE-index scale
#' end <- which(colnames(efc) == "c90cop9")
#'
#' # create data frame with COPE-index scale
#' mydf <- data.frame(efc[, start:end])
#' colnames(mydf) <- varlabs[start:end]
#'
#' \dontrun{
#' if (interactive()) {
#' tab_itemscale(mydf)
#'
#' # auto-detection of labels
#' tab_itemscale(efc[, start:end])
#'
#' # Compute PCA on Cope-Index, and perform a
#' # item analysis for each extracted factor.
#' indices <- tab_pca(mydf)$factor.index
#' tab_itemscale(mydf, factor.groups = indices)
#'
#' # or, equivalent
#' tab_itemscale(mydf, factor.groups = "auto")
#' }}
#' @export
tab_itemscale <- function(df,
factor.groups = NULL,
factor.groups.titles = "auto",
scale = FALSE,
min.valid.rowmean = 2,
alternate.rows = TRUE,
sort.column = NULL,
show.shapiro = FALSE,
show.kurtosis = FALSE,
show.corr.matrix = TRUE,
CSS = NULL,
encoding = NULL,
file = NULL,
use.viewer = TRUE,
remove.spaces = TRUE) {
# check encoding
encoding <- get.encoding(encoding, df)
# convert ordered factors to numeric
ordered_vars <- sapply(df, is.ordered)
if (any(ordered_vars)) df[ordered_vars] <- sjlabelled::as_numeric(df[ordered_vars])
# Warn if factors are used
factor_vars <- sapply(df, is.factor)
if (any(factor_vars)) {
df[factor_vars] <- sjlabelled::as_numeric(df[factor_vars])
warning("At least one variable is of type factor, please check if the factor levels are ordered correctly.")
}
# auto-detect variable labels
varlabels <- sjlabelled::get_label(df, def.value = colnames(df))
colnames(df) <- varlabels
# check whether we have (factor) groups
# for data frame
if (is.null(factor.groups))
factor.groups <- rep(1, length.out = ncol(df))
else if (inherits(factor.groups, "parameters_pca"))
factor.groups <- parameters::closest_component(factor.groups)
else if (length(factor.groups) == 1 && factor.groups == "auto") {
pr <- parameters::principal_components(df, rotation = "varimax")
factor.groups <- parameters::closest_component(pr)
}
# data frame with data from item-analysis-output-table
df.ia <- list()
# component's correlation matrix
df.comcor <- list()
diff.ideal.list <- list()
index.scores <- list()
# cronbach's alpha values
cronbach.total <- list()
# mean inter-item-correlation values
mic.total <- list()
# retrieve unique factor / group index values
findex <- sort(unique(factor.groups))
# set titles
if (!is.null(factor.groups.titles) && (factor.groups.titles[1] == "auto" || length(factor.groups.titles) != length(findex))) {
factor.groups.titles <- sprintf("Component %i", seq_along(findex))
}
# iterate all sub-scales (groups)
for (i in seq_len(length(findex))) {
# retrieve sub-scale
df.sub <- subset(df, select = which(factor.groups == findex[i]))
# remember item (column) names for return value
# return value gets column names of initial data frame
df.names <- colnames(df)[which(factor.groups == findex[i])]
# retrieve missing percentage for each item
missings.prz <- apply(df.sub, 2, function(x) round(100 * sum(is.na(x)) / length(x), 2))
# item difficulty
difficulty <- apply(df.sub, 2, function(x) {
x <- stats::na.omit(x)
round(sum(x) / (max(x) * length(x)), 2)
})
# ideal item difficulty
fun.diff.ideal <- function(x) {
p <- 1 / max(x, na.rm = TRUE)
round(p + (1 - p) / 2, 2)
}
diff.ideal <- apply(df.sub, 2, fun.diff.ideal)
# get statistics
dstat <- sjmisc::descr(df.sub)
reli <- performance::item_reliability(df.sub, standardize = scale)
# get index score value, by retrieving the row mean
item.score <- datawizard::row_means(df.sub, min_valid = min.valid.rowmean)
# store scaled values of each item's total score
# to compute correlation coefficients between identified components
df.subcc <- subset(df, select = which(factor.groups == findex[i]))
comcor <- sjmisc::std(rowSums(df.subcc), append = FALSE)
# check if we have valid return values from reliability test.
# In case df had less than 3 columns, NULL is returned
if (!is.null(reli)) {
alpha <- reli$alpha_if_deleted
itemdis <- reli$item_discrimination
} else {
alpha <- as.factor(NA)
itemdis <- as.factor(NA)
}
# create dummy data frame
df.dummy <- data_frame(cbind(
sprintf("%.2f %%", missings.prz),
round(dstat$mean, 2),
round(dstat$sd, 2),
round(dstat$skew, 2)
))
df.colnames <- c("Missings", "Mean", "SD", "Skew")
# include kurtosis statistics
if (show.kurtosis) {
df.dummy <- data_frame(cbind(df.dummy, round(as.numeric(datawizard::kurtosis(df.sub)), 2)))
df.colnames <- c(df.colnames, "Kurtosis")
}
# include shapiro-wilk normality test
if (show.shapiro) {
shaptest.w <- apply(df.sub, 2, function(x) stats::shapiro.test(x)$statistic)
shaptest.p <- apply(df.sub, 2, function(x) stats::shapiro.test(x)$p.value)
df.dummy <- data_frame(cbind(df.dummy, sprintf("%.2f (%.3f)", shaptest.w, shaptest.p)))
df.colnames <- c(df.colnames, "W(p)")
}
df.dummy <- data.frame(cbind(df.dummy, difficulty, itemdis, alpha))
df.colnames <- c(df.colnames, "Item Difficulty", "Item Discrimination", "α if deleted")
# set names of data frame
colnames(df.dummy) <- df.colnames
rownames(df.dummy) <- df.names
# add results to return list
df.ia[[length(df.ia) + 1]] <- df.dummy
diff.ideal.list[[length(diff.ideal.list) + 1]] <- diff.ideal
index.scores[[length(index.scores) + 1]] <- item.score
cronbach.total[[length(cronbach.total) + 1]] <- performance::cronbachs_alpha(df.sub)
df.comcor[[length(df.comcor) + 1]] <- comcor
# Mean-interitem-corelation
mic.total[[length(mic.total) + 1]] <- performance::item_intercor(df.sub)
}
# create data frame with index scores,
# including missings
df.index.scores <- as.data.frame(index.scores)
# proper col names
colnames(df.index.scores) <- sprintf("Score%i", seq_len(ncol(df.index.scores)))
footns <- purrr::map2_chr(mic.total, cronbach.total, ~ sprintf(
"Mean inter-item-correlation=%.3f · Cronbach's α=%.3f", .x, .y
))
if (is.null(CSS)) CSS <- list(css.firsttablecol = '+text-align:left;')
# get html-table from data frame
html <- tab_dfs(
x = df.ia,
titles = factor.groups.titles,
col.header = NULL,
alternate.rows = alternate.rows,
CSS = CSS,
sort.column = sort.column,
show.type = FALSE,
show.rownames = TRUE,
use.viewer = TRUE,
encoding = encoding,
show.footnote = TRUE,
footnotes = footns,
file = file
)
html2 <- NULL
# show component correlation table
if (show.corr.matrix) {
# check if we have enough components
if (length(df.comcor) > 1) {
# copy all component correlation values to a data frame
df.cc <- data.frame(matrix(unlist(df.comcor),
nrow = nrow(df),
byrow = FALSE))
# give proper columm names
colnames(df.cc) <- sprintf("Component %i", seq_len(ncol(df.cc)))
# compute correlation table, store html result
html2 <- tab_corr(
df.cc,
na.deletion = "listwise",
p.numeric = TRUE,
triangle = "lower",
string.diag = sprintf("α=%.3f", unlist(cronbach.total)),
encoding = encoding
)
}
}
if (!is.null(html2)) {
html$knitr <- paste0(html$knitr, "<p> </p>", html2$knitr)
html$page.content <- paste0(html$page.content, "<p> </p>", html2$page.content)
html$page.style <- paste0(html$page.style, html2$page.style)
html$page.complete <-
sprintf(
"<html>\n<head>\n<meta http-equiv=\"Content-type\" content=\"text/html;charset=%s\">\n%s\n</head>\n<body>\n%s\n</body></html>",
encoding,
html$page.style,
html$page.content
)
}
html$df.list <- df.ia
html$index.scores <- df.index.scores
html$cronbach.values <- cronbach.total
html$ideal.item.diff <- diff.ideal.list
sjlabelled::set_label(html$index.scores) <- purrr::map2_chr(mic.total, cronbach.total, ~ sprintf(
"Mean icc=%.3f; Cronbach's Alpha=%.3f", .x, .y
))
html
}
#' @rdname tab_itemscale
#' @export
sjt.itemanalysis <- tab_itemscale
|