File: tab_model.R

package info (click to toggle)
r-cran-sjplot 2.8.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,596 kB
  • sloc: sh: 13; makefile: 2
file content (1460 lines) | stat: -rw-r--r-- 53,371 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
#' @title Print regression models as HTML table
#' @name tab_model
#'
#' @description
#'   \code{tab_model()} creates HTML tables from regression models.
#'
#' @param title String, will be used as table caption.
#' @param terms Character vector with names of those terms (variables) that should
#'    be printed in the table. All other terms are removed from the output. If
#'    \code{NULL}, all terms are printed. Note that the term names must match
#'    the names of the model's coefficients. For factors, this means that
#'    the variable name is suffixed with the related factor level, and each
#'    category counts as one term. E.g. \code{rm.terms = "t_name [2,3]"}
#'    would remove the terms \code{"t_name2"} and \code{"t_name3"} (assuming
#'    that the variable \code{t_name} is categorical and has at least
#'    the factor levels \code{2} and \code{3}). Another example for the
#'    \emph{iris}-dataset: \code{terms = "Species"} would not work, instead
#'    use \code{terms = "Species [versicolor,virginica]"}.
#' @param rm.terms Character vector with names that indicate which terms should
#'    be removed from the output Counterpart to \code{terms}. \code{rm.terms =
#'    "t_name"} would remove the term \emph{t_name}. Default is \code{NULL}, i.e.
#'    all terms are used. For factors, levels that should be removed from the plot
#'    need to be explicitly indicated in square brackets, and match the model's
#'    coefficient names, e.g. \code{rm.terms = "t_name [2,3]"} would remove the terms
#'    \code{"t_name2"} and \code{"t_name3"} (assuming that the variable \code{t_name}
#'    was categorical and has at least the factor levels \code{2} and \code{3}).
#' @param keep,drop Character containing a regular expression pattern that
#'   describes the parameters that should be included (for \code{keep}) or excluded
#'   (for \code{drop}) in the returned data frame. \code{keep} may also be a
#'   named list of regular expressions. All non-matching parameters will be
#'   removed from the output. If \code{keep} has more than one element, these
#'   will be merged with an \code{OR} operator into a regular expression pattern
#'   like this: \code{"(one|two|three)"}. See further details in
#'   \code{?parameters::model_parameters}.
#' @param pred.labels Character vector with labels of predictor variables.
#'    If not \code{NULL}, \code{pred.labels} will be used in the first
#'    table column with the predictors' names. By default, if \code{auto.label = TRUE}
#'    and \href{https://strengejacke.github.io/sjlabelled/articles/intro_sjlabelled.html}{data is labelled},
#'    \code{\link[sjlabelled]{term_labels}} is called to retrieve the labels
#'    of the coefficients, which will be used as predictor labels. If data is
#'    not labelled, \href{https://easystats.github.io/parameters/reference/format_parameters.html}{format_parameters()}
#'    is used to create pretty labels. If \code{pred.labels = ""} or \code{auto.label = FALSE}, the raw
#'    variable names as used in the model formula are used as predictor
#'    labels. If \code{pred.labels} is a named vector, predictor labels (by
#'    default, the names of the model's coefficients) will be matched with the
#'    names of \code{pred.labels}. This ensures that labels always match the
#'    related predictor in the table, no matter in which way the predictors
#'    are sorted. See 'Examples'.
#' @param dv.labels Character vector with labels of dependent variables of all
#'    fitted models. If \code{dv.labels = ""}, the row with names of dependent
#'    variables is omitted from the table.
#' @param show.intercept Logical, if \code{TRUE}, the intercepts are printed.
#' @param show.est Logical, if \code{TRUE}, the estimates are printed.
#' @param show.zeroinf Logical, if \code{TRUE} and model has a zero-inflated
#'    model part, this is also printed to the table.
#' @param show.re.var Logical, if \code{TRUE}, prints the random effect variances
#'    for mixed models. See \code{\link[insight]{get_variance}} for details.
#' @param show.icc Logical, if \code{TRUE}, prints the intraclass correlation
#'    coefficient for mixed models. See \code{\link[performance]{icc}} for details.
#' @param show.ngroups Logical, if \code{TRUE}, shows number of random effects groups
#'    for mixed models.
#' @param show.dev Logical, if \code{TRUE}, shows the deviance of the model.
#' @param show.loglik Logical, if \code{TRUE}, shows the log-Likelihood of the model.
#' @param show.ci Either logical, and if \code{TRUE}, the confidence intervals
#'    is printed to the table; if \code{FALSE}, confidence intervals are
#'    omitted. Or numeric, between 0 and 1, indicating the range of the
#'    confidence intervals.
#' @param show.std Indicates whether standardized beta-coefficients should
#'    also printed, and if yes, which type of standardization is done.
#'    See 'Details'.
#' @param show.p Logical, if \code{TRUE}, p-values are also printed.
#' @param show.se Logical, if \code{TRUE}, the standard errors are
#'   also printed. If robust standard errors are required, use arguments
#'   \code{vcov.fun}, \code{vcov.type} and \code{vcov.args} (see
#'   \code{\link[parameters]{standard_error}} for details).
#' @param show.r2 Logical, if \code{TRUE}, the r-squared value is also printed.
#'    Depending on the model, these might be pseudo-r-squared values, or Bayesian
#'    r-squared etc. See \code{\link[performance]{r2}} for details.
#' @param show.stat Logical, if \code{TRUE}, the coefficients' test statistic
#'    is also printed.
#' @param show.df Logical, if \code{TRUE} and \code{p.val = "kr"}, the p-values
#'    for linear mixed models are based on df with Kenward-Rogers approximation.
#'    These df-values are printed. See \code{\link[parameters]{p_value}} for details.
#' @param string.pred Character vector,used as headline for the predictor column.
#'    Default is \code{"Predictors"}.
#' @param string.est Character vector, used for the column heading of coefficients.
#'    Default is based on the response scale, e.g. for logistic regression models,
#'    \code{"Odds Ratios"} will be chosen, while for Poisson models it is
#'    \code{"Incidence Rate Ratios"} etc. Default if not specified is \code{"Estimate"}.
#' @param string.std Character vector, used for the column heading of standardized beta coefficients. Default is \code{"std. Beta"}.
#' @param string.ci Character vector, used for the column heading of confidence interval values. Default is \code{"CI"}.
#' @param string.se Character vector, used for the column heading of standard error values. Default is \code{"std. Error"}.
#' @param string.std_se Character vector, used for the column heading of standard error of standardized coefficients. Default is \code{"standardized std. Error"}.
#' @param string.std_ci Character vector, used for the column heading of confidence intervals of standardized coefficients. Default is \code{"standardized std. Error"}.
#' @param string.p Character vector, used for the column heading of p values. Default is \code{"p"}.
#' @param string.std.p Character vector, used for the column heading of p values. Default is \code{"std. p"}.
#' @param string.df Character vector, used for the column heading of degrees of freedom. Default is \code{"df"}.
#' @param string.stat Character vector, used for the test statistic. Default is \code{"Statistic"}.
#' @param string.std.stat Character vector, used for the test statistic. Default is \code{"std. Statistic"}.
#' @param string.resp Character vector, used for the column heading of of the response level for multinominal or categorical models. Default is \code{"Response"}.
#' @param string.intercept Character vector, used as name for the intercept parameter. Default is \code{"(Intercept)"}.
#' @param strings Named character vector, as alternative to arguments like \code{string.ci}
#'    or \code{string.p} etc. The name (lhs) must be one of the string-indicator from
#'    the aforementioned arguments, while the value (rhs) is the string that is used
#'    as column heading. E.g., \code{strings = c(ci = "Conf.Int.", se = "std. Err")}
#'    would be equivalent to setting \code{string.ci = "Conf.Int.", string.se = "std. Err"}.
#' @param ci.hyphen Character vector, indicating the hyphen for confidence interval range.
#'    May be an HTML entity. See 'Examples'.
#' @param minus.sign string, indicating the minus sign for negative numbers.
#'    May be an HTML entity. See 'Examples'.
#' @param emph.p Logical, if \code{TRUE}, significant p-values are shown bold faced.
#' @param digits Amount of decimals for estimates
#' @param digits.p Amount of decimals for p-values
#' @param digits.rsq Amount of decimals for r-squared values
#' @param digits.re Amount of decimals for random effects part of the summary table.
#' @param collapse.ci Logical, if \code{FALSE}, the CI values are shown in
#'    a separate table column.
#' @param collapse.se Logical, if \code{FALSE}, the SE values are shown in
#'    a separate table column.
#' @param linebreak Logical, if \code{TRUE} and \code{collapse.ci = FALSE} or
#'    \code{collapse.se = FALSE}, inserts a line break between estimate and
#'    CI resp. SE values. If \code{FALSE}, values are printed in the same line
#'    as estimate values.
#' @param show.reflvl Logical, if \code{TRUE}, an additional row is inserted to
#'    the table before each predictor of type \code{\link{factor}}, which will
#'    indicate the reference level of the related factor.
#' @param show.ci50 Logical, if \code{TRUE}, for Bayesian models, a second
#'    credible interval is added to the table output.
#' @param bootstrap Logical, if \code{TRUE}, returns bootstrapped estimates..
#' @param iterations Numeric, number of bootstrap iterations (default is 1000).
#' @param seed Numeric, the number of the seed to replicate bootstrapped estimates. If \code{NULL}, uses random seed.
#' @param show.fstat Logical, if \code{TRUE}, the F-statistics for each model is
#'    printed in the table summary. This option is not supported by all model types.
#' @param show.aic Logical, if \code{TRUE}, the AIC value for each model is printed
#'    in the table summary.
#' @param show.aicc Logical, if \code{TRUE}, the second-order AIC value for each model
#'    is printed in the table summary.
#' @param show.obs Logical, if \code{TRUE}, the number of observations per model is
#'    printed in the table summary.
#' @param col.order Character vector, indicating which columns should be printed
#'    and in which order. Column names that are excluded from \code{col.order}
#'    are not shown in the table output. However, column names that are included,
#'    are only shown in the table when the related argument (like \code{show.est}
#'    for \code{"estimate"}) is set to \code{TRUE} or another valid value.
#'    Table columns are printed in the order as they appear in \code{col.order}.
#' @param df.method,p.val Method for computing degrees of freedom for p-values,
#'   standard errors and confidence intervals (CI). Only applies to mixed models.
#'   Use \code{df.method = "wald"} for a faster, but less precise computation.
#'   This will use the residual degrees of freedom (as returned by \code{df.residual()})
#'   for linear mixed models, and \code{Inf} degrees if freedom for all other
#'   model families. \code{df.method = "kenward"} (or \code{df.method = "kr"})
#'   uses Kenward-Roger approximation for the degrees of freedom.
#'   \code{df.method = "satterthwaite"} uses Satterthwaite's approximation and
#'   \code{"ml1"} uses a "m-l-1" heuristic see \code{\link[parameters]{degrees_of_freedom}}
#'   for details). Use \code{show.df = TRUE} to show the approximated degrees of freedom
#'   for each coefficient.
#' @param p.style Character, indicating if p-values should be printed as
#'   numeric value (\code{"numeric"}), as 'stars' (asterisks) only (\code{"stars"}),
#'   or scientific (\code{"scientific"}). Scientific and numeric style can be
#'   combined with "stars", e.g. \code{"numeric_stars"}
#' @param CSS A \code{\link{list}} with user-defined style-sheet-definitions,
#'    according to the \href{https://www.w3.org/Style/CSS/}{official CSS syntax}.
#'    See 'Details' or \href{https://strengejacke.github.io/sjPlot/articles/table_css.html}{this package-vignette}.
#' @param file Destination file, if the output should be saved as file.
#'    If \code{NULL} (default), the output will be saved as temporary file and
#'    opened either in the IDE's viewer pane or the default web browser.
#' @param use.viewer Logical, if \code{TRUE}, the HTML table is shown in the IDE's
#'    viewer pane. If \code{FALSE} or no viewer available, the HTML table is
#'    opened in a web browser.
#'
#' @inheritParams plot_models
#' @inheritParams plot_model
#' @inheritParams tab_df
#'
#' @return Invisibly returns
#'          \itemize{
#'            \item the web page style sheet (\code{page.style}),
#'            \item the web page content (\code{page.content}),
#'            \item the complete html-output (\code{page.complete}) and
#'            \item the html-table with inline-css for use with knitr (\code{knitr})
#'            }
#'            for further use.
#'
#' @note The HTML tables can either be saved as file and manually opened (use argument \code{file}) or
#'         they can be saved as temporary files and will be displayed in the RStudio Viewer pane (if working with RStudio)
#'         or opened with the default web browser. Displaying resp. opening a temporary file is the
#'         default behaviour (i.e. \code{file = NULL}).
#'         \cr \cr
#'         Examples are shown in these three vignettes:
#'         \href{https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html}{Summary of Regression Models as HTML Table},
#'         \href{https://strengejacke.github.io/sjPlot/articles/tab_mixed.html}{Summary of Mixed Models as HTML Table} and
#'         \href{https://strengejacke.github.io/sjPlot/articles/tab_bayes.html}{Summary of Bayesian Models as HTML Table}.
#'
#' @details
#' \subsection{Standardized Estimates}{
#'   Default standardization is done by completely refitting the model on the
#'   standardized data. Hence, this approach is equal to standardizing the
#'   variables before fitting the model, which is particularly recommended for
#'   complex models that include interactions or transformations (e.g., polynomial
#'   or spline terms). When \code{show.std = "std2"}, standardization of estimates
#'   follows \href{http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf}{Gelman's (2008)}
#'   suggestion, rescaling the estimates by dividing them by two standard deviations
#'   instead of just one. Resulting coefficients are then directly comparable for
#'   untransformed binary predictors. For backward compatibility reasons,
#'   \code{show.std} also may be a logical value; if \code{TRUE}, normal standardized
#'   estimates are printed (same effect as \code{show.std = "std"}). Use
#'   \code{show.std = NULL} (default) or \code{show.std = FALSE}, if no standardization
#'   is required.
#' }
#' \subsection{How do I use \code{CSS}-argument?}{
#'    With the \code{CSS}-argument, the visual appearance of the tables
#'    can be modified. To get an overview of all style-sheet-classnames
#'    that are used in this function, see return value \code{page.style} for details.
#'    Arguments for this list have following syntax:
#'    \enumerate{
#'      \item the class-names with \code{"css."}-prefix as argument name and
#'      \item each style-definition must end with a semicolon
#'    }
#'    You can add style information to the default styles by using a + (plus-sign) as
#'    initial character for the argument attributes. Examples:
#'    \itemize{
#'      \item \code{css.table = 'border:2px solid red;'} for a solid 2-pixel table border in red.
#'      \item \code{css.summary = 'font-weight:bold;'} for a bold fontweight in the summary row.
#'      \item \code{css.lasttablerow = 'border-bottom: 1px dotted blue;'} for a blue dotted border of the last table row.
#'      \item \code{css.colnames = '+color:green'} to add green color formatting to column names.
#'      \item \code{css.arc = 'color:blue;'} for a blue text color each 2nd row.
#'      \item \code{css.caption = '+color:red;'} to add red font-color to the default table caption style.
#'    }
#' }
#
#' @importFrom rlang .data
#' @export
tab_model <- function(
  ...,
  transform,

  show.intercept = TRUE,
  show.est = TRUE,
  show.ci = .95,
  show.ci50 = FALSE,
  show.se = NULL,
  show.std = NULL,
  std.response = TRUE,
  show.p = TRUE,
  show.stat = FALSE,
  show.df = FALSE,

  show.zeroinf = TRUE,
  show.r2 = TRUE,
  show.icc = TRUE,
  show.re.var = TRUE,
  show.ngroups = TRUE,
  show.fstat = FALSE,
  show.aic = FALSE,
  show.aicc = FALSE,
  show.dev = FALSE,
  show.loglik = FALSE,
  show.obs = TRUE,
  show.reflvl = FALSE,

  terms = NULL,
  rm.terms = NULL,
  order.terms = NULL,
  keep = NULL,
  drop = NULL,

  title = NULL,
  pred.labels = NULL,
  dv.labels = NULL,
  wrap.labels = 25,

  bootstrap = FALSE,
  iterations = 1000,
  seed = NULL,

  robust = FALSE,
  vcov.fun = NULL,
  vcov.type = NULL,
  vcov.args = NULL,

  string.pred = "Predictors",
  string.est = "Estimate",
  string.std = "std. Beta",
  string.ci = "CI",
  string.se = "std. Error",
  string.std_se = "standardized std. Error",
  string.std_ci = "standardized CI",
  string.p = "p",
  string.std.p = "std. p",
  string.df = "df",
  string.stat = "Statistic",
  string.std.stat = "std. Statistic",
  string.resp = "Response",
  string.intercept = "(Intercept)",
  strings = NULL,
  ci.hyphen = "&nbsp;&ndash;&nbsp;",
  minus.sign = "&#45;",

  collapse.ci = FALSE,
  collapse.se = FALSE,
  linebreak = TRUE,


  col.order = c(
    "est",
    "se",
    "std.est",
    "std.se",
    "ci",
    "std.ci",
    "ci.inner",
    "ci.outer",
    "stat",
    "std.stat",
    "p",
    "std.p",
    "df.error",
    "response.level"
  ),

  digits = 2,
  digits.p = 3,
  digits.rsq = 3,
  digits.re = 2,
  emph.p = TRUE,
  p.val = NULL,
  df.method = NULL,
  p.style = c("numeric", "stars", "numeric_stars", "scientific", "scientific_stars"),
  p.threshold = c(0.05, 0.01, 0.001),
  p.adjust = NULL,

  case = "parsed",
  auto.label = TRUE,
  prefix.labels = c("none", "varname", "label"),
  bpe = "median",
  CSS = css_theme("regression"),
  file = NULL,
  use.viewer = TRUE,
  encoding = "UTF-8"
) {

  if (!missing(df.method)) {
    p.val <- df.method
  }

  if (!is.null(p.val)) {
    p.val <- match.arg(p.val, choices = c("wald", "profile", "kenward", "kr", "satterthwaite", "ml1", "betwithin", "residual", "normal"))
  }
  p.style <- match.arg(p.style)
  prefix.labels <- match.arg(prefix.labels)

  change_string_est <- !missing(string.est)

  # if we prefix labels, use different default for case conversion,
  # else the separating white spaces after colon are removed.
  if (missing(case)) {
    if (prefix.labels == "none" && !show.reflvl)
      case <- "parsed"
    else
      case <- NULL
  }

  if (p.style == "stars") show.p <- FALSE

  # default robust?
  if (isTRUE(robust)) {
    vcov.fun <- "HC3"
  }

  models <- list(...)

  if (length(class(models[[1]])) == 1 && inherits(models[[1]], "list"))
    models <- lapply(models[[1]], function(x) x)

  names(models) <- unlist(lapply(
    match.call(expand.dots = FALSE)$`...`,
    function(.x) deparse(.x, width.cutoff = 500L))
  )

  auto.transform <- missing(transform)
  ci.lvl <- ifelse(is.null(show.ci), .95, show.ci)

  copos <- which("est" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "estimate"

  copos <- which("se" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "std.error"

  copos <- which("ci" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "conf.int"

  copos <- which("std.est" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "std.estimate"

  copos <- which("std.se" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "std.se"

  copos <- which("std.ci" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "std.conf.int"

  copos <- which("p" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "p.value"

  copos <- which("std.p" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "std.p.value"

  copos <- which("stat" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "statistic"

  copos <- which("std.stat" == col.order)
  if (!sjmisc::is_empty(copos)) col.order[copos] <- "std.statistic"

  # match strings, to label the default strings in the table,
  # like "Estimate", "CI" etc.
  if (!sjmisc::is_empty(strings) && !is.null(names(strings))) {
    s.names <- names(strings)
    if ("pred" %in% s.names) string.pred <- strings[["pred"]]
    if ("est" %in% s.names) string.est <- strings[["est"]]
    if ("std" %in% s.names) string.std <- strings[["std"]]
    if ("ci" %in% s.names) string.ci <- strings[["ci"]]
    if ("se" %in% s.names) string.se <- strings[["se"]]
    if ("std_se" %in% s.names) string.std_se <- strings[["std_se"]]
    if ("std_ci" %in% s.names) string.std_ci <- strings[["std_ci"]]
    if ("p" %in% s.names) string.p <- strings[["p"]]
    if ("std.p" %in% s.names) string.std.p <- strings[["std.p"]]
    if ("df" %in% s.names) string.df <- strings[["df"]]
    if ("stat" %in% s.names) string.stat <- strings[["stat"]]
    if ("std.stat" %in% s.names) string.std.stat <- strings[["std.stat"]]
    if ("resp" %in% s.names) string.resp <- strings[["resp"]]
    if ("intercept" %in% s.names) string.intercept <- strings[["intercept"]]
  }

  model.list <- purrr::map2(
    models,
    seq_along(models),
    function(model, i) {

      # get info on model family
      fam.info <- insight::model_info(model)

      if (insight::is_multivariate(model))
        fam.info <- fam.info[[1]]

      # check whether estimates should be transformed or not

      if (auto.transform) {
        if (is.null(fam.info) || fam.info$is_linear || identical(fam.info$link_function, "identity"))
          transform <- NULL
        else
          transform <- "exp"
      }

      # get tidy output of summary ----

      dat <- tidy_model(
        model = model,
        ci.lvl = ci.lvl,
        tf = transform,
        type = "est",
        bpe = bpe,
        robust = list(vcov.fun = vcov.fun, vcov.type = vcov.type, vcov.args = vcov.args),
        facets = FALSE,
        show.zeroinf = show.zeroinf,
        p.val = p.val,
        bootstrap = bootstrap,
        iterations = iterations,
        seed = seed,
        p_adjust = p.adjust,
        keep = keep,
        drop = drop
      )


      # transform estimates

      if (!is.stan(model) && !is.null(transform)) {
        funtrans <- match.fun(transform)
        dat[["estimate"]] <- funtrans(dat[["estimate"]])
        dat[["conf.low"]] <- funtrans(dat[["conf.low"]])
        dat[["conf.high"]] <- funtrans(dat[["conf.high"]])
        dat[["std.error"]] <- dat[["std.error"]] * dat[["estimate"]]
      }


      # merge CI columns

      if (all(c("conf.low", "conf.high") %in% names(dat))) {
        dat <- dat %>%
          dplyr::mutate(conf.int = sprintf(
            "%.*f%s%.*f",
            digits,
            .data$conf.low,
            ci.hyphen,
            digits,
            .data$conf.high
          )) %>%
          dplyr::select(-.data$conf.low, -.data$conf.high)
      }

      # get inner probability (i.e. 2nd CI for Stan-models) ----

      if (is.stan(model)) {
        dat <- dat %>%
          sjmisc::var_rename(conf.int = "ci.outer") %>%
          dplyr::mutate(ci.inner = sprintf(
            "%.*f%s%.*f",
            digits,
            .data$conf.low50,
            ci.hyphen,
            digits,
            .data$conf.high50
          )) %>%
            dplyr::select(-.data$conf.low50, -.data$conf.high50)
      }

      # tidy output of standardized values ----

      if (!is.null(show.std) && !is.stan(model)) {
        std_method <- switch(show.std, "std" = "refit", "std2" = "2sd", "")
        tmp_dat <- tidy_model(
          model = model,
          ci.lvl = ci.lvl,
          tf = transform,
          type = "est",
          bpe = bpe,
          robust = list(vcov.fun = vcov.fun, vcov.type = vcov.type, vcov.args = vcov.args),
          facets = FALSE,
          show.zeroinf = show.zeroinf,
          p.val = p.val,
          p_adjust = p.adjust,
          standardize = std_method,
          bootstrap = bootstrap,
          iterations = iterations,
          seed = seed,
          keep = keep,
          drop = drop,
          std.response = std.response
        ) %>%
          format_p_values(p.style, digits.p, emph.p, p.threshold) %>%
          sjmisc::var_rename(
            estimate = "std.estimate",
            std.error = "std.se",
            conf.low = "std.conf.low",
            conf.high = "std.conf.high",
            p.value = "std.p.value",
            statistic = "std.statistic",
            p.stars = "std.p.stars"
          ) %>%
          dplyr::select(-1)

        # transform estimates

        if (!is.stan(model) && !is.null(transform)) {
          funtrans <- match.fun(transform)
          tmp_dat[["std.estimate"]] <- funtrans(tmp_dat[["std.estimate"]])
          tmp_dat[["std.conf.low"]] <- funtrans(tmp_dat[["std.conf.low"]])
          tmp_dat[["std.conf.high"]] <- funtrans(tmp_dat[["std.conf.high"]])
          tmp_dat[["std.se"]] <- tmp_dat[["std.se"]] * tmp_dat[["std.estimate"]]
        }

        dat <- tmp_dat %>%
          sjmisc::add_columns(dat) %>%
          dplyr::mutate(std.conf.int = sprintf(
            "%.*f%s%.*f",
            digits,
            .data$std.conf.low,
            ci.hyphen,
            digits,
            .data$std.conf.high
          )) %>%
          dplyr::select(-.data$std.conf.low, -.data$std.conf.high)
        # if t-statistic is the same for standardized and unstandardized model
        # remove standardized; ignore intercept
        if (all(round(dat$statistic[-1], 3) == round(dat$std.statistic[-1], 3))) {
          dat <- dat %>%
            dplyr::select(-.data$std.statistic, -.data$std.p.value)
        }
      }

      # format p values for unstandardized model
      dat <- format_p_values(dat, p.style, digits.p, emph.p, p.threshold)

      # add asterisks to estimates ----

      if (grepl("stars", p.style)) {
        if (obj_has_name(dat, "estimate"))
          dat$estimate <- sprintf("%.*f <sup>%s</sup>", digits, dat$estimate, dat$p.stars)
        if (!show.est && obj_has_name(dat, "std.estimate")) {
          dat$std.estimate <- sprintf("%.*f <sup>%s</sup>", digits, dat$std.estimate, dat$std.p.stars)
          dat <- dplyr::select(dat, -.data$std.p.stars)
        }
      }

      if ("p.stars" %in% names(dat)) {
        dat <- dplyr::select(dat, -.data$p.stars)
      }


      # switch column for p-value and conf. int. ----

      dat <- dat[, sort_columns(colnames(dat), is.stan(model), col.order)]


      # add suffix to column names, so we can distinguish models later

      cn <- colnames(dat)[2:ncol(dat)]
      colnames(dat)[2:ncol(dat)] <- sprintf("%s_%i", cn, i)


      # for HTML, convert numerics to character ----

      dat <- dat %>%
        purrr::map_if(is.numeric, ~ sprintf("%.*f", digits, .x)) %>%
        as.data.frame(stringsAsFactors = FALSE)


      # remove 2nd HDI if requested ----

      if (!show.ci50)
        dat <- dplyr::select(dat, -string_starts_with("ci.inner", colnames(dat)))


      ## TODO optionally insert linebreak for new-line-CI / SE

      # merge estimates and CI / SE columns, if requested ----

      if (collapse.ci) {

        if (linebreak)
          lb <- "<br>"
        else
          lb <- " "

        est.cols <- string_starts_with("estimate", x = colnames(dat))
        dat[[est.cols]] <- sprintf("%s%s(%s)", dat[[est.cols]], lb, dat[[est.cols + 2]])

        # for stan models, we also have 50% HDI
        if (!sjmisc::is_empty(string_starts_with("ci", x = colnames(dat)))) {
          if (isTRUE(show.ci50)) {
            dat <- dplyr::select(dat, -string_starts_with("ci.inner", x = colnames(dat)))
            dat[[est.cols]] <- sprintf("%s%s(%s)", dat[[est.cols]], lb, dat[[est.cols + 2]])
          }
          dat <- dplyr::select(dat, -string_starts_with("ci.outer", x = colnames(dat)))
        } else {
          dat <- dplyr::select(dat, -string_starts_with("conf.int", x = colnames(dat)))
        }

        std.cols <- string_starts_with("std.estimate", x = colnames(dat))
        if (!sjmisc::is_empty(std.cols)) {
          dat[[std.cols]] <- sprintf("%s%s(%s)", dat[[std.cols]], lb, dat[[std.cols + 2]])
          dat <- dplyr::select(dat, -string_starts_with("std.conf.int", x = colnames(dat)))
        }
      }

      if (collapse.se) {

        if (linebreak)
          lb <- "<br>"
        else
          lb <- " "

        est.cols <- string_starts_with("estimate", x = colnames(dat))
        dat[[est.cols]] <- sprintf("%s%s(%s)", dat[[est.cols]], lb, dat[[est.cols + 1]])
        dat <- dplyr::select(dat, -string_starts_with("std.error", x = colnames(dat)))

        std.cols <- string_starts_with("std.estimate", x = colnames(dat))
        if (!sjmisc::is_empty(std.cols)) {
          dat[[std.cols]] <- sprintf("%s%s(%s)", dat[[std.cols]], lb, dat[[std.cols + 1]])
          dat <- dplyr::select(dat, -string_starts_with("std.se", x = colnames(dat)))
        }
      }


      # replace minus signs
      dat[] <- lapply(dat, function(i) gsub("-(\\d)(.*)", paste0(minus.sign, "\\1\\2"), i))


      # handle zero-inflation part ----

      zidat <- NULL
      wf <- string_starts_with("wrap.facet", x = colnames(dat))

      if (!sjmisc::is_empty(wf)) {
        zi <- which(dat[[wf]] %in% c("Zero-Inflated Model", "Zero Inflation Model", "zero_inflated", "zi"))

        if (show.zeroinf && !sjmisc::is_empty(zi)) {
          zidat <- dat %>%
            dplyr::slice(!! zi) %>%
            dplyr::select(!! -wf)
        }

        if (!sjmisc::is_empty(zi)) dat <- dplyr::slice(dat, !! -zi)
        dat <- dplyr::select(dat, !! -wf)
      }


      # Add no of observations statistic ----

      n_obs <- NULL

      if (show.obs) {
        n_obs <- get_observations(model)
      }


      vars <- vars_brms <- NULL

      # extract variance components ----

      if ((show.icc || show.re.var || show.r2) && is_mixed_model(model)) {
        if (inherits(model, "brmsfit")) {
          vars <- suppressWarnings(insight::get_variance(model))
          if (is.null(vars)) {
            vars_brms <- tryCatch(
              {
                performance::variance_decomposition(model)
              },
              error = function(e) {
                NULL
              }
            )
            if (!is.null(vars_brms)) {
              vars$var.intercept <- attr(vars_brms, "var_rand_intercept")
              vars$var.residual <- attr(vars_brms, "var_residual")
            }
          }
        } else {
          vars <- suppressWarnings(insight::get_variance(model))
        }
      } else {
        vars <- NULL
      }

      # sanity check for models currently not supported by "get_variance()"
      if (!is.null(vars) && length(vars) == 1 && is.na(vars)) vars <- NULL

      # Add ICC statistic ----

      icc <- NULL

      if (show.icc && is_mixed_model(model) && !is.null(vars) && !all(is.na(vars))) {
        if (inherits(model, "brmsfit") && !is.null(vars_brms)) {
          icc <- list(icc.adjusted = vars_brms$ICC_decomposed)
        } else {
          icc <- list(icc.adjusted = vars$var.random / (vars$var.random + vars$var.residual))
        }
      }

      # Add r-squared statistic ----

      rsq <- NULL

      if (show.r2 && !insight::is_multivariate(model)) {
        # if marginal and conditional r-squared already have been computed
        # via adjusted ICC, use these results and avoid time consuming
        # multiple computation
        if (is_mixed_model(model)) {
          if (inherits(model, "brmsfit")) {
            rsqdummy <- tryCatch(suppressWarnings(performance::r2(model)),
                                 error = function(x) NULL)
            if (!is.null(rsqdummy)) {
              rsq <- list(
                `Marginal R2` = rsqdummy$R2_Bayes_marginal,
                `Conditional R2` = rsqdummy$R2_Bayes
              )
            }
          } else if (!is.null(vars)) {
            if (is.null(vars$var.random)) {
              rsq <- list(
                `Marginal R2` = vars$var.fixed / (vars$var.fixed + vars$var.residual),
                `Conditional R2` = NA
              )
            } else {
              rsq <- list(
                `Marginal R2` = vars$var.fixed / (vars$var.fixed + vars$var.random + vars$var.residual),
                `Conditional R2` = (vars$var.fixed + vars$var.random) / (vars$var.fixed + vars$var.random + vars$var.residual)
              )
            }
          }
        } else {
          rsq <- tryCatch(suppressWarnings(performance::r2(model)),
                          error = function(x) NULL)

          # fix names of r-squared values

          if (!is.null(rsq)) {
            rnames <- sub("_", " ", names(rsq))
            names(rsq) <- rnames
          }
        }
      }


      # Add number of random effect groups ----

      n_re_grps <- NULL

      if (show.ngroups && is_mixed_model(model)) {
        rand_eff <- insight::get_data(model, verbose = FALSE)[, insight::find_random(model, split_nested = TRUE, flatten = TRUE), drop = FALSE]
        n_re_grps <- sapply(rand_eff, function(.i) length(unique(.i, na.rm = TRUE)))
        names(n_re_grps) <- sprintf("ngrps.%s", names(n_re_grps))
      }


      # Add deviance and AIC statistic ----

      dev <- NULL
      if (show.dev) dev <- model_deviance(model)

      aic <- NULL
      if (show.aic) aic <- model_aic(model)

      aicc <- NULL
      if (show.aicc) aicc <- model_aicc(model)

      loglik <- NULL
      if (show.loglik) loglik <- model_loglik(model)


      ## TODO add F-Statistic


      # fix brms coefficient names

      if (inherits(model, "brmsfit")) {
        dat$term <- gsub("^b_", "", dat$term)
        if (!is.null(zidat)) zidat$term <- gsub("^b_", "", zidat$term)
      }


      # check if Intercept should be renamed...

      if (string.intercept != "(Intercept)") {
        intercepts <- which(dat$term == "(Intercept)")
        if (!sjmisc::is_empty(intercepts)) {
          dat$term[intercepts] <- string.intercept
        }
        if (!is.null(zidat)) {
          intercepts <- which(zidat$term == "(Intercept)")
          if (!sjmisc::is_empty(intercepts)) {
            zidat$term[intercepts] <- string.intercept
          }
        }
      }


      list(
        dat = dat,
        transform = transform,
        zeroinf = zidat,
        rsq = rsq,
        n_obs = n_obs,
        icc = icc,
        dev = dev,
        aic = aic,
        variances = vars,
        n_re_grps = n_re_grps,
        loglik = loglik,
        aicc = aicc
      )
    }
  )


  # join all model data frames and convert to character ----

  na.vals <- c(
    "NA",
    sprintf("NA%sNA", ci.hyphen),
    sprintf("NA (NA%sNA)", ci.hyphen),
    sprintf("NA (NA%sNA) (NA)", ci.hyphen)
  )

  # we have data for fixed effects and zero inflation part as
  # well as transformation of coefficients in a list, so separate
  # them out into own objects

  model.data <- purrr::map(model.list, ~.x[[1]])
  transform.data <- purrr::map(model.list, ~.x[[2]])
  zeroinf.data <- purrr::map(model.list, ~.x[[3]])
  rsq.data <- purrr::map(model.list, ~.x[[4]])
  n_obs.data <- purrr::map(model.list, ~.x[[5]])
  icc.data <- purrr::map(model.list, ~.x[[6]])
  dev.data <- purrr::map(model.list, ~.x[[7]])
  aic.data <- purrr::map(model.list, ~.x[[8]])
  variance.data <- purrr::map(model.list, ~.x[[9]])
  ngrps.data <- purrr::map(model.list, ~.x[[10]])
  loglik.data <- purrr::map(model.list, ~.x[[11]])
  aicc.data <- purrr::map(model.list, ~.x[[12]])
  is.zeroinf <- purrr::map_lgl(model.list, ~ !is.null(.x[[3]]))

  zeroinf.data <- purrr::compact(zeroinf.data)


  # make sure we don't have zi-data if not wanted

  if (!show.zeroinf) zeroinf.data <- NULL


  # sort multivariate response models by response level

  model.data <- purrr::map(model.data, function(.x) {
    resp.col <- string_starts_with("response.level", x = colnames(.x))
    if (!sjmisc::is_empty(resp.col))
      .x[order(match(.x[[resp.col]], unique(.x[[resp.col]]))), ]
    else
      .x
  })


  # if only one multivariate response model, split data
  # to print models side by side, and update labels of
  # dependent variables

  show.response <- TRUE

  if (length(model.data) == 1) {
    fi <- insight::model_info(models[[1]])

    if (insight::is_multivariate(models[[1]]))
      fi <- fi[[1]]

    if (!is.null(fi) && (insight::is_multivariate(models[[1]]) || fi$is_categorical)) {

      show.response <- FALSE

      if (fi$is_categorical) {
        dv.labels <- sprintf(
          "%s: %s",
          insight::find_response(models[[1]]),
          unique(model.data[[1]][["response.level_1"]])
        )

        model.data <- split(model.data[[1]], model.data[[1]]["response.level_1"])
      } else {
        dv.labels <- insight::find_response(models[[1]])
        model.data <- split(model.data[[1]], model.data[[1]]["response.level_1"])
        dv.labels <- dv.labels[match(names(dv.labels), names(model.data))]
        dv.labels <- sjmisc::word_wrap(dv.labels, wrap = wrap.labels, linesep = "<br>")
      }

      model.data <- purrr::map2(model.data, seq_along(model.data), function(x, y) {
        colnames(x) <- gsub(
          pattern = "_1",
          replacement = sprintf("_%i", y),
          x = colnames(x)
        )
        x
      })
    }
  }


  # Join all models into one data frame, and replace NA by empty strings

  dat <- model.data %>%
    purrr::reduce(~ dplyr::full_join(.x, .y, by = "term")) %>%
    purrr::map_df(~ dplyr::if_else(.x %in% na.vals | is.na(.x), "", .x))

  # remove unwanted columns and rows ----

  dat <-
    remove_unwanted(
      dat,
      show.intercept,
      show.est,
      show.std,
      show.ci,
      show.se,
      show.stat,
      show.p,
      show.df,
      show.response,
      terms,
      rm.terms
    )


  # same for zero-inflated parts ----

  zeroinf <- NULL
  if (!sjmisc::is_empty(zeroinf.data)) {
    zeroinf <- zeroinf.data %>%
      purrr::reduce(~ dplyr::full_join(.x, .y, by = "term")) %>%
      purrr::map_df(~ dplyr::if_else(.x %in% na.vals | is.na(.x), "", .x))

    zeroinf <-
      remove_unwanted(
        zeroinf,
        show.intercept,
        show.est,
        show.std,
        show.ci,
        show.se,
        show.stat,
        show.p,
        show.df,
        show.response,
        terms,
        rm.terms
      )
  }


  # get default labels for dv and terms ----

  if (isTRUE(auto.label) && sjmisc::is_empty(pred.labels)) {
    if (.labelled_model_data(models) || any(sapply(models, is.stan)) || isTRUE(show.reflvl)) {
      pred.labels <- sjlabelled::term_labels(models, case = case, mark.cat = TRUE, prefix = prefix.labels)
      category.values <- attr(pred.labels, "category.value")

      # remove random effect labels
      re_terms <- unlist(sapply(
        models,
        insight::find_predictors,
        effects = "random",
        component = "all",
        flatten = TRUE
      ))

      if (!is.null(re_terms)) {
        pred.labels.tmp <- sjlabelled::term_labels(models, case = case, mark.cat = TRUE, prefix = "varname")
        for (.re in re_terms) {
          found <- grepl(paste0("^", .re, ":"), pred.labels.tmp)
          if (any(found)) {
            pred.labels <- pred.labels[!found]
            category.values <- category.values[!found]
            pred.labels.tmp <- pred.labels.tmp[!found]
          }
        }
      }

      no.dupes <- !duplicated(names(pred.labels))
      pred.labels <- prepare.labels(
        x = pred.labels[no.dupes],
        grp = show.reflvl,
        categorical = category.values[no.dupes],
        models = models
      )
    } else {
      pred.labels <- NULL
      for (pl_counter in seq_along(models)) {
        pred.labels <- c(pred.labels, parameters::format_parameters(models[[pl_counter]]))
      }
      pred.labels <- pred.labels[!duplicated(names(pred.labels))]
      show.reflvl <- FALSE
    }
  } else {
    # no automatic grouping of table rows for categorical variables
    # when user supplies own labels
    show.reflvl <- FALSE
  }


  # to insert "header" rows for categorical variables, we need to
  # save the original term names first.

  # remember.terms <- dat$term


  # named vector for predictor labels means we try to match labels
  # with model terms

  if (!sjmisc::is_empty(pred.labels)) {

    if (!is.null(names(pred.labels))) {
      labs <- sjmisc::word_wrap(pred.labels, wrap = wrap.labels, linesep = "<br>")
      if (show.reflvl) {
        pl <- pred.labels
        dupes <- which(pred.labels == names(pred.labels))
        if (!sjmisc::is_empty(dupes)) pl <- pl[-dupes]
        dat <- merge(dat, data.frame(term = names(pl)), by = "term", all = TRUE)
        # resort, in case reference level is alphabetically after other categories
        found <- match(names(pl), dat$term)
        dat[sort(found), ] <- dat[found, ]
        refs <- is.na(dat[, 2])
      } else {
        refs <- NULL
      }
      # some labels may not match. in this case, we only need to replace those
      # elements in the vector that match a specific label, but
      # at the correct position inside "dat$term"
      tr <- seq_len(nrow(dat))
      find.matches <- match(dat$term, names(pred.labels))
      find.na <- which(is.na(find.matches))
      if (!sjmisc::is_empty(find.na)) tr <- tr[-find.na]
      rp <- as.vector(stats::na.omit(find.matches))

      dat$term[tr] <- unname(labs[rp])

      if (!is.null(refs)) {
        dat[refs, 2:ncol(dat)] <- ""
        est.cols <- if (show.est)
          grepl("^estimate", colnames(dat))
        else if (show.std)
          grepl("^std.estimate", colnames(dat))
        else
          NULL
        if (!is.null(est.cols)) dat[refs, est.cols] <- "<em>Reference</em>"
      }

      # also label zero-inflated part

      if (!is.null(zeroinf)) {
        tr <- seq_len(nrow(zeroinf))
        find.matches <- match(zeroinf$term, names(pred.labels))
        find.na <- which(is.na(find.matches))
        if (!sjmisc::is_empty(find.na)) tr <- tr[-find.na]
        rp <- as.vector(stats::na.omit(find.matches))

        zeroinf$term[tr] <- unname(labs[rp])
      }

    } else {
      if (length(pred.labels) == nrow(dat))
        dat$term <- pred.labels
      else
        message("Length of `pred.labels` does not equal number of predictors, no labelling applied.")
    }
  }


  if (isTRUE(auto.label) && is.null(dv.labels)) {
    dv.labels <- sjmisc::word_wrap(
      sjlabelled::response_labels(models, case = case),
      wrap = wrap.labels,
      linesep = "<br>"
    )
  } else if (is.null(dv.labels)) {
    dv.labels <- purrr::map(models, insight::find_response) %>% purrr::flatten_chr()
  }


  # does user want a specific order for terms?

  if (!is.null(order.terms)) {
    if (length(order.terms) == nrow(dat)) {
      dat <- dat[order.terms, ]
    } else {
      message("Number of values in `order.terms` does not match number of terms. Terms are not sorted.")
    }
  }


  # get proper column header labels ----

  col.header <- purrr::map_chr(colnames(dat), function(x) {
    pos <- grep("^estimate_", x)

    if (!sjmisc::is_empty(pos)) {
      i <- as.numeric(sub("estimate_", "", x = x, fixed = TRUE))

      if (insight::is_multivariate(models[[1]]))
        mr <- i
      else
        mr <- NULL

      if (change_string_est && !sjmisc::is_empty(string.est)) {
        x <- string.est
      } else if (i <= length(models)) {
        x <- estimate_axis_title(
          models[[i]],
          axis.title = NULL,
          type = "est",
          transform = transform.data[[i]],
          multi.resp = mr,
          include.zeroinf = FALSE
        )
      } else if (length(models) == 1) {
        x <- estimate_axis_title(
          models[[1]],
          axis.title = NULL,
          type = "est",
          transform = transform.data[[1]],
          multi.resp = mr,
          include.zeroinf = FALSE
        )
      } else {
        x <- string.est
      }
    }


    pos <- grep("^term", x)
    if (!sjmisc::is_empty(pos)) x <- string.pred

    pos <- grep("^conf.int", x)
    if (!sjmisc::is_empty(pos)) x <- string.ci

    pos <- grep("^std.error", x)
    if (!sjmisc::is_empty(pos)) x <- string.se

    pos <- grep("^std.estimate", x)
    if (!sjmisc::is_empty(pos)) x <- string.std

    pos <- grep("^std.se", x)
    if (!sjmisc::is_empty(pos)) x <- string.std_se

    pos <- grep("^std.conf.int", x)
    if (!sjmisc::is_empty(pos)) x <- string.std_ci

    pos <- grep("^p.value", x)
    if (!sjmisc::is_empty(pos)) x <- string.p

    pos <- grep("^std.p.value", x)
    if (!sjmisc::is_empty(pos)) x <- string.std.p

    pos <- grep("^df", x)
    if (!sjmisc::is_empty(pos)) x <- string.df

    pos <- grep("^statistic", x)
    if (!sjmisc::is_empty(pos)) x <- string.stat

    pos <- grep("^std.statistic", x)
    if (!sjmisc::is_empty(pos)) x <- string.std.stat

    pos <- grep("^response.level", x)
    if (!sjmisc::is_empty(pos)) x <- string.resp

    pos <- grep("^ci.inner", x)
    if (!sjmisc::is_empty(pos)) x <- "CI (50%)"

    pos <- grep("^ci.outer", x)
    if (!sjmisc::is_empty(pos)) x <- sprintf("CI (%i%%)", round(100 * show.ci))

    x
  })


  if (grepl("stars", p.style))
    footnote <- sprintf(
      "* p&lt;%s&nbsp;&nbsp;&nbsp;** p&lt;%s&nbsp;&nbsp;&nbsp;*** p&lt;%s",
      format(p.threshold[1]),
      format(p.threshold[2]),
      format(p.threshold[3])
    )
  else
    footnote <- NULL


  tab_model_df(
    x = dat,
    zeroinf = zeroinf,
    is.zeroinf = is.zeroinf,
    title = title,
    col.header = col.header,
    dv.labels = dv.labels,
    rsq.list = rsq.data,
    n_obs.list = n_obs.data,
    icc.list = icc.data,
    dev.list = dev.data,
    aic.list = aic.data,
    aicc.list = aicc.data,
    variance.list = variance.data,
    ngrps.list = ngrps.data,
    loglik.list = loglik.data,
    n.models = length(model.list),
    show.re.var = show.re.var,
    show.icc = show.icc,
    CSS = CSS,
    file = file,
    use.viewer = use.viewer,
    footnote = footnote,
    digits.rsq = digits.rsq,
    digits.re = digits.re,
    encoding = encoding
  )
}


#' @importFrom stats na.omit
sort_columns <- function(x, is.stan, col.order) {
  ## TODO check code for multiple response models
  ## TODO allow custom sorting

  reihe <- c(
    "term",
    "estimate",
    "std.error",
    "std.estimate",
    "std.se",
    "conf.int",
    "std.conf.int",
    "ci.inner",
    "ci.outer",
    "statistic",
    "p.value",
    "df.error",
    "wrap.facet",
    "response.level"
  )

  # fix args
  if (sjmisc::is_empty(col.order)) col.order <- reihe
  if (col.order[1] != "term") col.order <- c("term", col.order)
  if (!("wrap.facet" %in% col.order)) col.order <- c(col.order, "wrap.facet")

  if (is.stan) {
    pcol <- which(col.order == "p.value")
    if (!sjmisc::is_empty(pcol))
      col.order <- col.order[-pcol]
  }

  as.vector(stats::na.omit(match(col.order, x)))
}


#' @importFrom dplyr select slice
remove_unwanted <- function(dat,
                            show.intercept,
                            show.est,
                            show.std,
                            show.ci,
                            show.se,
                            show.stat,
                            show.p,
                            show.df,
                            show.response,
                            terms,
                            rm.terms) {
  if (!show.intercept) {
    ints1 <- string_contains("(Intercept", x = dat$term)
    ints2 <- string_contains("b_Intercept", x = dat$term)
    ints3 <- string_contains("b_zi_Intercept", x = dat$term)
    ints4 <- which(dat$term %in% "Intercept")

    ints <- c(ints1, ints2, ints3, ints4)

    if (!sjmisc::is_empty(ints))
      dat <- dplyr::slice(dat, !! -ints)
  }

  if (show.est == FALSE) {
    dat <- dplyr::select(
      dat,
      -string_starts_with("estimate", x = colnames(dat)),
      -string_starts_with("conf", x = colnames(dat)),
      -string_starts_with("std.error", x = colnames(dat))
    )
  }

  if (is.null(show.std) || show.std == FALSE) {
    dat <- dplyr::select(dat, -string_starts_with("std.estimate", x = colnames(dat)))
  }

  if (is.null(show.ci) || show.ci == FALSE) {
    dat <- dplyr::select(
      dat,
      -string_starts_with("conf", x = colnames(dat)),
      -string_starts_with("std.conf", x = colnames(dat)),
      -string_starts_with("ci", x = colnames(dat))
    )
  }

  if (is.null(show.se) || show.se == FALSE) {
    dat <- dplyr::select(
      dat,
      -string_starts_with("std.error", x = colnames(dat)),
      -string_starts_with("std.se", x = colnames(dat))
    )
  }

  if (show.stat == FALSE) {
    dat <- dplyr::select(dat, -string_starts_with("statistic", x = colnames(dat)),
                         -string_starts_with("std.statistic", x = colnames(dat)))
  }

  if (show.response == FALSE) {
    dat <- dplyr::select(dat, -string_starts_with("response.level", x = colnames(dat)))
  }

  if (show.p == FALSE) {
    dat <- dplyr::select(dat, -string_starts_with("p.value", x = colnames(dat)),
                         -string_starts_with("std.p.value", x = colnames(dat)))
  }

  if (show.df == FALSE) {
    dat <- dplyr::select(dat, -string_starts_with("df", x = colnames(dat)))
  }

  if (!is.null(terms)) {
    terms <- parse_terms(terms)
    keep_terms <- which(dat$term %in% terms)
    dat <- dplyr::slice(dat, !! keep_terms)
  }

  if (!is.null(rm.terms)) {
    rm.terms <- parse_terms(rm.terms)
    keep_terms <- which(!(dat$term %in% rm.terms))
    dat <- dplyr::slice(dat, !! keep_terms)
  }

  dat
}


prepare.labels <- function(x, grp, categorical, models) {

  # remove variable names from factor is ref levels are shown
  if (grp) {
    for (i in models) {
      f <- names(which(sapply(insight::get_data(i, verbose = FALSE), is.factor)))
      remove <- names(x) %in% f
      if (any(remove)) {
        x <- x[!remove]
        categorical <- categorical[!remove]
      }
    }
  }

  x_var <- names(x[!categorical])
  x_val <- names(x[categorical])

  for (i in x_var) {
    pos <- string_starts_with(i, x = x_val)

    if (!grp || (length(pos) > 0 && length(pos) < 3)) {
      match.vals <- x_val[pos]
      x[match.vals] <- sprintf("%s: %s", x[i], x[match.vals])
    }
  }

  x
}

format_p_values <- function(dat, p.style, digits.p, emph.p, p.threshold) {
  # get stars and significance at alpha = 0.05 ----

  if (!"p.value" %in% names(dat)) {
    return(dat)
  }

  dat <- dat %>%
    dplyr::mutate(
    p.stars = get_p_stars(.data$p.value, p.threshold),
    p.sig = .data$p.value < .05
  )

  # scientific notation ----

  if (grepl("scientific", p.style)) {
    dat$p.value <- formatC(dat$p.value, format = "e", digits = digits.p)
  } else {
    dat$p.value <- sprintf("%.*f", digits.p, dat$p.value)
  }

  # emphasize p-values ----

  if (emph.p && !all(dat$p.value == "NA")) dat$p.value[which(dat$p.sig)] <- sprintf("<strong>%s</strong>", dat$p.value[which(dat$p.sig)])
  dat <- dplyr::select(dat, -.data$p.sig)

  # indicate p <0.001 ----

  pv <- paste0("0.", paste(rep("0", digits.p), collapse = ""))
  dat$p.value[dat$p.value == pv] <- paste("&lt;", format(10^(-digits.p), scientific = FALSE), sep = "")

  pv <- paste0("<strong>0.", paste(rep("0", digits.p), collapse = ""), "</strong>")
  dat$p.value[dat$p.value == pv] <- paste("<strong>&lt;", format(10^(-digits.p), scientific = FALSE), "</strong>", sep = "")
  dat
}