1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
#' @title Summary of principal component analysis as HTML table
#' @name tab_pca
#'
#' @description Performes a principle component analysis on a data frame or matrix
#' (with varimax or oblimin rotation) and displays the factor solution as HTML
#' table, or saves them as file. \cr \cr In case a data frame is used as
#' parameter, the Cronbach's Alpha value for each factor scale will be calculated,
#' i.e. all variables with the highest loading for a factor are taken for the
#' reliability test. The result is an alpha value for each factor dimension.
#'
#' @param data A data frame that should be used to compute a PCA, or a \code{\link{prcomp}} object.
#' @param rotation Rotation of the factor loadings. May be one of
#' \code{"varimax", "quartimax", "promax", "oblimin", "simplimax", "cluster"}
#' or \code{"none"}.
#' @param nmbr.fctr Number of factors used for calculating the rotation. By
#' default, this value is \code{NULL} and the amount of factors is
#' calculated according to the Kaiser-criteria.
#' @param fctr.load.tlrn Specifies the minimum difference a variable needs to have between
#' factor loadings (components) in order to indicate a clear loading on just one factor and not
#' diffusing over all factors. For instance, a variable with 0.8, 0.82 and 0.84 factor loading
#' on 3 possible factors can not be clearly assigned to just one factor and thus would be removed
#' from the principal component analysis. By default, the minimum difference of loading values
#' between the highest and 2nd highest factor should be 0.1
#' @param show.cronb Logical, if \code{TRUE} (default), the cronbach's alpha value for each factor scale will be calculated,
#' i.e. all variables with the highest loading for a factor are taken for the
#' reliability test. The result is an alpha value for each factor dimension.
#' Only applies when \code{data} is a data frame.
#' @param show.msa Logical, if \code{TRUE}, shows an additional column with the measure of sampling adequacy according
#' dor each component.
#' @param show.var Logical, if \code{TRUE}, the proportions of variances for each component as well as cumulative
#' variance are shown in the table footer.
#' @param string.pov String for the table row that contains the proportions of variances. By default,
#' \emph{"Proportion of Variance"} will be used.
#' @param string.cpov String for the table row that contains the cumulative variances. By default,
#' \emph{"Cumulative Proportion"} will be used.
#'
#' @inheritParams tab_model
#' @inheritParams view_df
#' @inheritParams tab_df
#' @inheritParams tab_xtab
#' @inheritParams plot_grpfrq
#' @inheritParams tab_corr
#'
#' @return Invisibly returns
#' \itemize{
#' \item the web page style sheet (\code{page.style}),
#' \item the web page content (\code{page.content}),
#' \item the complete html-output (\code{page.complete}),
#' \item the html-table with inline-css for use with knitr (\code{knitr}),
#' \item the \code{factor.index}, i.e. the column index of each variable with the highest factor loading for each factor and
#' \item the \code{removed.items}, i.e. which variables have been removed because they were outside of the \code{fctr.load.tlrn}'s range.
#' }
#' for further use.
#'
#' @examples
#' \dontrun{
#' # Data from the EUROFAMCARE sample dataset
#' library(sjmisc)
#' data(efc)
#'
#' # recveive first item of COPE-index scale
#' start <- which(colnames(efc) == "c82cop1")
#' # recveive last item of COPE-index scale
#' end <- which(colnames(efc) == "c90cop9")
#' # auto-detection of labels
#' if (interactive()) {
#' tab_pca(efc[, start:end])
#' }}
#' @importFrom stats prcomp
#' @importFrom performance cronbachs_alpha
#' @export
tab_pca <- function(data,
rotation = c("varimax", "quartimax", "promax", "oblimin", "simplimax", "cluster", "none"),
nmbr.fctr = NULL,
fctr.load.tlrn = 0.1,
title = "Principal Component Analysis",
var.labels = NULL,
wrap.labels = 40,
show.cronb = TRUE,
show.msa = FALSE,
show.var = FALSE,
alternate.rows = FALSE,
digits = 2,
string.pov = "Proportion of Variance",
string.cpov = "Cumulative Proportion",
CSS = NULL,
encoding = NULL,
file = NULL,
use.viewer = TRUE,
remove.spaces = TRUE) {
# -------------------------------------
# check encoding
# -------------------------------------
encoding <- get.encoding(encoding, data)
rotation <- match.arg(rotation)
# --------------------------------------------------------
# try to automatically set labels is not passed as parameter
# --------------------------------------------------------
if (is.null(var.labels) && is.data.frame(data)) {
var.labels <- sjlabelled::get_label(data, def.value = colnames(data))
}
if (!requireNamespace("psych", quietly = TRUE)) {
stop("Package 'psych' required for this function to work. Please install it.", call. = FALSE)
}
# ----------------------------
# check if user has passed a data frame
# or a pca object
# ----------------------------
if (inherits(data, "prcomp")) {
pcadata <- data
dataframeparam <- FALSE
show.msa <- FALSE
} else {
pcadata <- stats::prcomp(
stats::na.omit(data),
retx = TRUE,
center = TRUE,
scale. = TRUE
)
dataframeparam <- TRUE
}
# -------------------------------------
# init header
# -------------------------------------
toWrite <- table.header <- sprintf("<html>\n<head>\n<meta http-equiv=\"Content-type\" content=\"text/html;charset=%s\">\n", encoding)
# -------------------------------------
# init style sheet and tags used for css-definitions
# we can use these variables for string-replacement
# later for return value
# -------------------------------------
tag.table <- "table"
tag.caption <- "caption"
tag.thead <- "thead"
tag.tdata <- "tdata"
tag.centeralign <- "centeralign"
tag.rightalign <- "rightalign"
tag.cronbach <- "cronbach"
tag.msa <- "msa"
tag.pov <- "pov"
tag.cpov <- "cpov"
tag.rotate <- "rotate"
tag.kmo <- "kmo"
tag.arc <- "arc"
tag.minval <- "minval"
tag.removable <- "removable"
tag.firsttablerow <- "firsttablerow"
tag.firsttablecol <- "firsttablecol"
css.table <- "border-collapse:collapse; border:none;"
css.caption <- "font-weight: bold; text-align:left;"
css.thead <- "border-top:double black; padding:0.2cm;"
css.tdata <- "padding:0.2cm;"
css.centeralign <- "text-align:center;"
css.rightalign <- "text-align:right;"
css.cronbach <- "font-style:italic;"
css.msa <- "font-style:italic; color:#666666;"
css.kmo <- "font-style:italic; border-bottom:double;"
css.rotate <- "font-style:italic; font-size:0.9em;"
css.pov <- "font-style:italic; border-top:1px solid;"
css.cpov <- "font-style:italic;"
css.minval <- "color:#cccccc;"
css.arc <- "background-color:#eaeaea;"
css.removable <- "background-color:#eacccc;"
css.firsttablerow <- "border-top:1px solid black;"
css.firsttablecol <- ""
if (!show.msa && !show.cronb) css.cpov <- sprintf("%s border-bottom:double;", css.cpov)
if (!show.msa && show.cronb) css.cronbach <- sprintf("%s border-bottom:double;", css.cronbach)
if (!show.var && show.cronb) css.cronbach <- sprintf("%s border-top:1px solid;", css.cronbach)
if (!show.var && !show.cronb) css.kmo <- sprintf("%s border-top:1px solid;",css.kmo)
if (!show.var && !show.cronb && !show.msa) css.table <- sprintf("%s border-bottom:double;", css.table)
# ------------------------
# check user defined style sheets
# ------------------------
if (!is.null(CSS)) {
if (!is.null(CSS[['css.table']])) css.table <- ifelse(substring(CSS[['css.table']], 1, 1) == '+', paste0(css.table, substring(CSS[['css.table']], 2)), CSS[['css.table']])
if (!is.null(CSS[['css.thead']])) css.thead <- ifelse(substring(CSS[['css.thead']], 1, 1) == '+', paste0(css.thead, substring(CSS[['css.thead']], 2)), CSS[['css.thead']])
if (!is.null(CSS[['css.tdata']])) css.tdata <- ifelse(substring(CSS[['css.tdata']], 1, 1) == '+', paste0(css.tdata, substring(CSS[['css.tdata']], 2)), CSS[['css.tdata']])
if (!is.null(CSS[['css.caption']])) css.caption <- ifelse(substring(CSS[['css.caption']], 1, 1) == '+', paste0(css.caption, substring(CSS[['css.caption']], 2)), CSS[['css.caption']])
if (!is.null(CSS[['css.centeralign']])) css.centeralign <- ifelse(substring(CSS[['css.centeralign']], 1, 1) == '+', paste0(css.centeralign, substring(CSS[['css.centeralign']], 2)), CSS[['css.centeralign']])
if (!is.null(CSS[['css.rightalign']])) css.rightalign <- ifelse(substring(CSS[['css.rightalign']], 1, 1) == '+', paste0(css.rightalign, substring(CSS[['css.rightalign']], 2)), CSS[['css.rightalign']])
if (!is.null(CSS[['css.arc']])) css.arc <- ifelse(substring(CSS[['css.arc']], 1, 1) == '+', paste0(css.arc, substring(CSS[['css.arc']], 2)), CSS[['css.arc']])
if (!is.null(CSS[['css.firsttablerow']])) css.firsttablerow <- ifelse(substring(CSS[['css.firsttablerow']], 1, 1) == '+', paste0(css.firsttablerow, substring(CSS[['css.firsttablerow']], 2)), CSS[['css.firsttablerow']])
if (!is.null(CSS[['css.firsttablecol']])) css.firsttablecol <- ifelse(substring(CSS[['css.firsttablecol']], 1, 1) == '+', paste0(css.firsttablecol, substring(CSS[['css.firsttablecol']], 2)), CSS[['css.firsttablecol']])
if (!is.null(CSS[['css.cronbach']])) css.cronbach <- ifelse(substring(CSS[['css.cronbach']], 1, 1) == '+', paste0(css.cronbach, substring(CSS[['css.cronbach']], 2)), CSS[['css.cronbach']])
if (!is.null(CSS[['css.msa']])) css.msa <- ifelse(substring(CSS[['css.msa']], 1, 1) == '+', paste0(css.msa, substring(CSS[['css.msa']], 2)), CSS[['css.msa']])
if (!is.null(CSS[['css.kmo']])) css.kmo <- ifelse(substring(CSS[['css.kmo']], 1, 1) == '+', paste0(css.kmo, substring(CSS[['css.kmo']], 2)), CSS[['css.kmo']])
if (!is.null(CSS[['css.rotate']])) css.rotate <- ifelse(substring(CSS[['css.rotate']], 1, 1) == '+', paste0(css.rotate, substring(CSS[['css.rotate']], 2)), CSS[['css.rotate']])
if (!is.null(CSS[['css.pov']])) css.pov <- ifelse(substring(CSS[['css.pov']], 1, 1) == '+', paste0(css.pov, substring(CSS[['css.pov']], 2)), CSS[['css.pov']])
if (!is.null(CSS[['css.cpov']])) css.cpov <- ifelse(substring(CSS[['css.cpov']], 1, 1) == '+', paste0(css.cpov, substring(CSS[['css.cpov']], 2)), CSS[['css.cpov']])
if (!is.null(CSS[['css.minval']])) css.minval <- ifelse(substring(CSS[['css.minval']], 1, 1) == '+', paste0(css.minval, substring(CSS[['css.minval']], 2)), CSS[['css.minval']])
if (!is.null(CSS[['css.removable']])) css.removable <- ifelse(substring(CSS[['css.removable']], 1, 1) == '+', paste0(css.removable, substring(CSS[['css.removable']], 2)), CSS[['css.removable']])
}
# ------------------------
# set page style
# ------------------------
page.style <- sprintf("<style>\nhtml, body { background-color: white; }\n%s { %s }\n%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n.%s { %s }\n</style>",
tag.table, css.table, tag.caption, css.caption, tag.thead, css.thead,
tag.tdata, css.tdata, tag.cronbach, css.cronbach, tag.minval, css.minval,
tag.removable, css.removable, tag.firsttablerow, css.firsttablerow,
tag.firsttablecol, css.firsttablecol, tag.centeralign, css.centeralign,
tag.rightalign, css.rightalign, tag.rotate, css.rotate,
tag.msa, css.msa, tag.kmo, css.kmo, tag.pov, css.pov, tag.cpov,
css.cpov, tag.arc, css.arc)
# ------------------------
# start content
# ------------------------
toWrite <- paste0(toWrite, page.style)
toWrite = paste(toWrite, "\n</head>\n<body>", "\n")
# ----------------------------
# calculate eigenvalues
# ----------------------------
pcadata.eigenval <- pcadata$sdev^2
# ----------------------------
# retrieve best amount of factors according
# to Kaiser-critearia, i.e. factors with eigen value > 1
# ----------------------------
pcadata.kaiser <- which(pcadata.eigenval < 1)[1] - 1
# --------------------------------------------------------
# varimax rotation, retrieve factor loadings
# --------------------------------------------------------
# check for predefined number of factors
if (!is.null(nmbr.fctr) && is.numeric(nmbr.fctr)) pcadata.kaiser <- nmbr.fctr
if (pcadata.kaiser < 2) {
stop("Only one principal component extracted. Can't rotate loading matrices. You may use `nmbr.fctr` to extract more than one component.", call. = F)
}
rotation <- match.arg(rotation)
# rotate matrix
if (rotation == "varimax")
pcadata.rotate <- varimaxrota(pcadata, pcadata.kaiser)
else
pcadata.rotate <- psych::principal(r = data, nfactors = pcadata.kaiser, rotate = rotation)
# create data frame with factor loadings
df <- as.data.frame(pcadata.rotate$loadings[, seq_len(ncol(pcadata.rotate$loadings))])
# ----------------------------
# check if user defined labels have been supplied
# if not, use variable names from data frame
# ----------------------------
if (is.null(var.labels)) var.labels <- row.names(df)
# ----------------------------
# Prepare length of labels
# ----------------------------
if (!is.null(var.labels)) {
# wrap long variable labels
var.labels <- sjmisc::word_wrap(var.labels, wrap.labels, "<br>")
}
# --------------------------------------------------------
# this function checks which items have unclear factor loadings,
# i.e. which items do not strongly load on a single factor but
# may load almost equally on several factors
# --------------------------------------------------------
getRemovableItems <- function(dataframe) {
# clear vector
removers <- c()
# iterate each row of the data frame. each row represents
# one item with its factor loadings
for (i in seq_len(nrow(dataframe))) {
# get factor loadings for each item
rowval <- as.numeric(abs(df[i, ]))
# retrieve highest loading
maxload <- max(rowval)
# retrieve 2. highest loading
max2load <- sort(rowval, TRUE)[2]
# check difference between both
if (abs(maxload - max2load) < fctr.load.tlrn) {
# if difference is below the tolerance,
# remeber row-ID so we can remove that items
# for further PCA with updated data frame
removers <- c(removers, i)
}
}
# return a vector with index numbers indicating which items
# have unclear loadings
return(removers)
}
# --------------------------------------------------------
# this function retrieves a list with the column index ("factor" index)
# where each case of the data frame has its highedt factor loading.
# So we know to which "group" (factor dimension) each case of the
# data frame belongs to according to the pca results
# --------------------------------------------------------
getItemLoadings <- function(dataframe) {
# return a vector with index numbers indicating which items
# loads the highest on which factor
return(apply(dataframe, 1, function(x) which.max(abs(x))))
}
# --------------------------------------------------------
# this function calculates the cronbach's alpha value for
# each factor scale, i.e. all variables with the highest loading
# for a factor are taken for the reliability test. The result is
# an alpha value for each factor dimension
# --------------------------------------------------------
getCronbach <- function(dataframe, itemloadings) {
# clear vector
cbv <- c()
# iterate all highest factor loadings of items
for (n in seq_len(length(unique(itemloadings)))) {
# calculate cronbach's alpha for those cases that all have the
# highest loading on the same factor
cbv <- c(cbv, performance::cronbachs_alpha(stats::na.omit(dataframe[, which(itemloadings == n)])))
}
# cbv now contains the factor numbers and the related alpha values
# for each "factor dimension scale"
return(cbv)
}
# ----------------------------------
# Cronbach's Alpha can only be calculated when having a data frame
# with each component / variable as column
# ----------------------------------
if (dataframeparam) {
# get alpha values
alphaValues <- getCronbach(data, getItemLoadings(df))
} else {
message("Cronbach's Alpha can only be calculated when having a data frame with each component / variable as column.")
alphaValues <- NULL
show.cronb <- FALSE
}
# -------------------------------------
# retrieve those items that have unclear factor loadings, i.e.
# which almost load equally on several factors. The tolerance
# that indicates which difference between factor loadings is
# considered as "equally" is defined via fctr.load.tlrn
# -------------------------------------
removableItems <- getRemovableItems(df)
# -------------------------------------
# retrieve kmo and msa for data set
# -------------------------------------
kmo <- NULL
if (show.msa) kmo <- psych::KMO(data)
# -------------------------------------
# variance
# -------------------------------------
pov <- cpov <- NULL
if (show.var) {
pov <- summary(pcadata)$importance[2, seq_len(pcadata.kaiser)]
cpov <- summary(pcadata)$importance[3, seq_len(pcadata.kaiser)]
}
# -------------------------------------
# convert data frame, add label names
# -------------------------------------
maxdf <- apply(df, 1, function(x) max(abs(x)))
# -------------------------------------
# start table tag
# -------------------------------------
page.content <- "<table>\n"
# -------------------------------------
# table caption, variable label
# -------------------------------------
if (!is.null(title)) page.content <- paste0(page.content, sprintf(" <caption>%s</caption>\n", title))
# -------------------------------------
# header row
# -------------------------------------
# write tr-tag
page.content <- paste0(page.content, " <tr>\n")
# first column
page.content <- paste0(page.content, " <th class=\"thead\"> </th>\n")
# iterate columns
for (i in seq_len(ncol(df))) {
page.content <- paste0(page.content, sprintf(" <th class=\"thead\">Component %i</th>\n", i))
}
# check if msa column should be shown
if (show.msa) page.content <- paste0(page.content, " <th class=\"thead msa\">MSA</th>\n")
# close table row
page.content <- paste0(page.content, " </tr>\n")
# -------------------------------------
# data rows
# -------------------------------------
# iterate all rows of df
for (i in seq_len(nrow(df))) {
# start table row
rowcss <- ""
# check for removable items in first row
if (i %in% removableItems && i == 1) rowcss <- " firsttablerow removable"
# check for removable items in other rows
if (i %in% removableItems && i != 1) rowcss <- " removable"
# check for non-removable items in first row
if (is.na(match(i, removableItems)) && i == 1) rowcss <- " firsttablerow"
# default row string for alternative row colors
arcstring <- ""
# if we have alternating row colors, set css
if (alternate.rows) arcstring <- ifelse(sjmisc::is_even(i), " arc", "")
# write tr-tag with class-attributes
page.content <- paste0(page.content, " <tr>\n")
# print first table cell
page.content <- paste0(page.content, sprintf(" <td class=\"firsttablecol%s%s\">%s</td>\n",
arcstring, rowcss, var.labels[i]))
# iterate all columns
for (j in seq_len(ncol(df))) {
# start table column
colcss <- sprintf(" class=\"tdata centeralign%s%s\"", arcstring, rowcss)
if (maxdf[[i]] != max(abs(df[i, j])))
colcss <- sprintf(" class=\"tdata centeralign minval%s%s\"", arcstring, rowcss)
page.content <- paste0(page.content, sprintf(" <td%s>%.*f</td>\n",
colcss, digits, df[i, j]))
}
# check if msa column should be shown
if (show.msa) page.content <- paste0(page.content, sprintf(" <td class=\"tdata msa centeralign%s%s\">%.*f</td>\n",
arcstring,
rowcss,
digits,
kmo$MSAi[[i]]))
# close row
page.content <- paste0(page.content, " </tr>\n")
}
# -------------------------------------
# variance
# -------------------------------------
if (show.var) {
# write tr-tag with class-attributes
page.content <- paste0(page.content, " <tr>\n")
# first column
page.content <- paste0(page.content, sprintf(" <td class=\"tdata pov\">%s</td>\n", string.pov))
# iterate alpha-values
for (i in 1:length(pov)) {
page.content <- paste0(page.content, sprintf(" <td class=\"tdata centeralign pov\">%.*f %%</td>\n",
digits,
100 * pov[i]))
}
# check if msa column should be shown
if (show.msa) page.content <- paste0(page.content, " <td class=\"tdata centeralign pov\"></td>\n")
page.content <- paste0(page.content, " </tr>\n <tr>\n")
# first column
page.content <- paste0(page.content, sprintf(" <td class=\"tdata cpov\">%s</td>\n", string.cpov))
# iterate alpha-values
for (i in 1:length(pov)) {
page.content <- paste0(page.content, sprintf(" <td class=\"tdata centeralign cpov\">%.*f %%</td>\n",
digits,
100 * cpov[i]))
}
# check if msa column should be shown
if (show.msa) page.content <- paste0(page.content, " <td class=\"tdata centeralign cpov\"></td>\n")
page.content <- paste0(page.content, " </tr>\n")
}
# -------------------------------------
# cronbach's alpha
# -------------------------------------
if (show.cronb && !is.null(alphaValues)) {
# write tr-tag with class-attributes
page.content <- paste0(page.content, " <tr>\n")
# first column
page.content <- paste0(page.content, " <td class=\"tdata cronbach\">Cronbach's α</td>\n")
# iterate alpha-values
for (i in seq_len(length(alphaValues))) {
page.content <- paste0(page.content, sprintf(" <td class=\"tdata centeralign cronbach\">%.*f</td>\n",
digits,
alphaValues[i]))
}
# check if msa column should be shown
if (show.msa) page.content <- paste0(page.content, " <td class=\"tdata centeralign cronbach\"></td>\n")
page.content <- paste0(page.content, " </tr>\n")
}
# -------------------------------------
# Kaiser-Meyer-Olkin-Kriterium
# -------------------------------------
if (show.msa) {
# write tr-tag with class-attributes
page.content <- paste0(page.content, " <tr>\n")
page.content <- paste0(page.content, " <td class=\"tdata kmo\">Kaiser-Meyer-Olkin</td>\n")
page.content <- paste0(page.content, sprintf(" <td class=\"tdata centeralign kmo\" colspan=\"%i\"></td>\n", ncol(df)))
page.content <- paste0(page.content, sprintf(" <td class=\"tdata centeralign kmo\">%.*f</td>\n", digits, kmo$MSA))
page.content <- paste0(page.content, " </tr>\n")
}
# -------------------------------------
# show rotation
# -------------------------------------
colsp <- ncol(df) + 1
if (show.msa) colsp <- colsp + 1
page.content <- paste0(page.content, " <tr>\n")
page.content <- paste0(page.content, sprintf(" <td class=\"tdata rightalign rotate\" colspan=\"%i\">%s-rotation</td>\n", colsp, rotation))
page.content <- paste0(page.content, " </tr>\n")
# -------------------------------------
# finish table
# -------------------------------------
page.content <- paste(page.content, "\n</table>")
# -------------------------------------
# finish html page
# -------------------------------------
toWrite <- paste(toWrite, page.content, "\n")
toWrite <- paste0(toWrite, "</body></html>")
# -------------------------------------
# create list with factor loadings that indicate
# on which column inside the data frame the highest
# loading is
# -------------------------------------
factorindex <- apply(df, 1, function(x) which.max(abs(x)))
# -------------------------------------
# replace class attributes with inline style,
# useful for knitr
# -------------------------------------
# copy page content
# -------------------------------------
knitr <- page.content
# -------------------------------------
# set style attributes for main table tags
# -------------------------------------
knitr <- gsub("class=", "style=", knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub("<table", sprintf("<table style=\"%s\"", css.table), knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub("<caption", sprintf("<caption style=\"%s\"", css.caption), knitr, fixed = TRUE, useBytes = TRUE)
# -------------------------------------
# replace class-attributes with inline-style-definitions
# -------------------------------------
knitr <- gsub(tag.tdata, css.tdata, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.thead, css.thead, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.centeralign, css.centeralign, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.rightalign, css.rightalign, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.cronbach, css.cronbach, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.msa, css.msa, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.pov, css.pov, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.arc, css.arc, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.cpov, css.cpov, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.kmo, css.kmo, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.rotate, css.rotate, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.minval, css.minval, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.removable, css.removable, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.firsttablerow, css.firsttablerow, knitr, fixed = TRUE, useBytes = TRUE)
knitr <- gsub(tag.firsttablecol, css.firsttablecol, knitr, fixed = TRUE, useBytes = TRUE)
# -------------------------------------
# remove spaces?
# -------------------------------------
if (remove.spaces) {
knitr <- sju.rmspc(knitr)
toWrite <- sju.rmspc(toWrite)
page.content <- sju.rmspc(page.content)
}
# -------------------------------------
# return results
# -------------------------------------
structure(class = c("sjTable", "sjtpca"),
list(page.style = page.style,
page.content = page.content,
page.complete = toWrite,
knitr = knitr,
factor.index = factorindex,
removed.items = removableItems,
file = file,
header = table.header,
viewer = use.viewer))
}
|