1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
data_frame <- function(...) {
x <- data.frame(..., stringsAsFactors = FALSE)
rownames(x) <- NULL
x
}
# do we have a stan-model?
is.stan <- function(x) inherits(x, c("stanreg", "stanfit", "brmsfit"))
#' @importFrom sjmisc is_empty
#' @importFrom dplyr n_distinct
stan.has.multiranef <- function(x) {
if (obj_has_name(x, "facet")) {
ri <- string_starts_with("(Intercept", x = x$facet)
if (!sjmisc::is_empty(ri)) {
return(dplyr::n_distinct(x$facet[ri]) > 1)
}
}
FALSE
}
has_value_labels <- function(x) {
!(is.null(attr(x, "labels", exact = T)) && is.null(attr(x, "value.labels", exact = T)))
}
#' @importFrom grDevices axisTicks
#' @importFrom dplyr if_else
#' @importFrom sjmisc is_empty
axis_limits_and_ticks <- function(axis.lim, min.val, max.val, grid.breaks, exponentiate, min.est, max.est) {
# factor to multiply the axis limits. for exponentiated scales,
# these need to be large enough to find appropriate pretty numbers
fac.ll <- dplyr::if_else(exponentiate, .3, .95)
fac.ul <- dplyr::if_else(exponentiate, 3.3, 1.05)
# check for correct boundaries
if (is.infinite(min.val) || is.na(min.val)) min.val <- min.est
if (is.infinite(max.val) || is.na(max.val)) max.val <- max.est
# for negative signs, need to change multiplier
if (min.val < 0) fac.ll <- 1 / fac.ll
if (max.val < 0) fac.ul <- 1 / fac.ul
# axis limits
if (is.null(axis.lim)) {
lower_lim <- min.val * fac.ll
upper_lim <- max.val * fac.ul
} else {
lower_lim <- axis.lim[1]
upper_lim <- axis.lim[2]
}
# determine gridbreaks
if (is.null(grid.breaks)) {
if (exponentiate) {
# make sure we have nice x-positions for breaks
lower_lim <- round(lower_lim, 2)
upper_lim <- round(upper_lim, 2)
# for *very* small values, lower_lim might be zero, so
# correct value here. else we have Inf as limit
if (lower_lim == 0) lower_lim <- min.val * fac.ll / 10
# use pretty distances for log-scale
ls <- log10(c(lower_lim, upper_lim))
ticks <- grDevices::axisTicks(c(floor(ls[1]), ceiling(ls[2])), log = TRUE)
# truncate ticks to highest value below lower lim and
# lowest value above upper lim
ll <- which(ticks < lower_lim)
if (!sjmisc::is_empty(ll) && length(ll) > 1) ticks <- ticks[ll[length(ll)]:length(ticks)]
ul <- which(ticks > upper_lim)
if (!sjmisc::is_empty(ul) && length(ul) > 1) ticks <- ticks[1:ul[1]]
} else {
ticks <- pretty(c(floor(lower_lim), ceiling(upper_lim)))
}
} else {
if (length(grid.breaks) == 1)
ticks <- seq(floor(lower_lim), ceiling(upper_lim), by = grid.breaks)
else
ticks <- grid.breaks
}
# save proper axis limits
list(axis.lim = c(min(ticks), max(ticks)), ticks = ticks)
}
estimate_axis_title <- function(fit, axis.title, type, transform = NULL, multi.resp = NULL, include.zeroinf = FALSE) {
# no automatic title for effect-plots
if (type %in% c("eff", "pred", "int")) return(axis.title)
# check default label and fit family
if (is.null(axis.title)) {
fitfam <- insight::model_info(fit)
if (!is.null(multi.resp))
fitfam <- fitfam[[multi.resp]]
else if (insight::is_multivariate(fit))
fitfam <- fitfam[[1]]
axis.title <- dplyr::case_when(
!is.null(transform) && transform == "plogis" ~ "Probabilities",
is.null(transform) && fitfam$is_binomial ~ "Log-Odds",
is.null(transform) && fitfam$is_ordinal ~ "Log-Odds",
is.null(transform) && fitfam$is_multinomial ~ "Log-Odds",
is.null(transform) && fitfam$is_categorical ~ "Log-Odds",
is.null(transform) && fitfam$is_count ~ "Log-Mean",
fitfam$is_count ~ "Incidence Rate Ratios",
fitfam$is_ordinal ~ "Odds Ratios",
fitfam$is_multinomial ~ "Odds Ratios",
fitfam$is_categorical ~ "Odds Ratios",
fitfam$is_binomial && !fitfam$is_logit ~ "Risk Ratios",
fitfam$is_binomial ~ "Odds Ratios",
TRUE ~ "Estimates"
)
if (fitfam$is_zero_inflated && isTRUE(include.zeroinf)) {
if (is.null(transform))
axis.title <- c(axis.title, "Log-Odds")
else
axis.title <- c(axis.title, "Odds Ratios")
}
}
axis.title
}
#' @importFrom dplyr case_when
get_p_stars <- function(pval, thresholds = NULL) {
if (is.null(thresholds)) thresholds <- c(.05, .01, .001)
dplyr::case_when(
is.na(pval) ~ "",
pval < thresholds[3] ~ "***",
pval < thresholds[2] ~ "**",
pval < thresholds[1] ~ "*",
TRUE ~ ""
)
}
is_merMod <- function(fit) {
inherits(fit, c("lmerMod", "glmerMod", "nlmerMod", "merModLmerTest"))
}
is_brms_mixed <- function(fit) {
inherits(fit, "brmsfit") && !sjmisc::is_empty(fit$ranef)
}
# short checker so we know if we need more summary statistics like ICC
#' @importFrom insight model_info is_multivariate
is_mixed_model <- function(fit) {
mi <- insight::model_info(fit)
if (is.null(mi)) {
return(FALSE)
}
if (insight::is_multivariate(fit))
mi[[1]]$is_mixed
else
mi$is_mixed
}
nulldef <- function(x, y, z = NULL) {
if (is.null(x)) {
if (is.null(y))
z
else
y
} else
x
}
geom_intercept_line <- function(yintercept, axis.scaling, vline.color) {
if (yintercept > axis.scaling$axis.lim[1] && yintercept < axis.scaling$axis.lim[2]) {
t <- theme_get()
if (is.null(t$panel.grid.major)) t$panel.grid.major <- t$panel.grid
color <- nulldef(vline.color, t$panel.grid.major$colour, "grey90")
minor_size <- nulldef(t$panel.grid.minor$size, .125)
major_size <- nulldef(t$panel.grid.major$size, minor_size * 1.5)
size <- major_size * 1.5
geom_hline(yintercept = yintercept, color = color, size = size)
} else {
NULL
}
}
# same as above, but no check if intercept is within boundaries or not
geom_intercept_line2 <- function(yintercept, vline.color) {
t <- theme_get()
if (is.null(t$panel.grid.major)) t$panel.grid.major <- t$panel.grid
color <- nulldef(vline.color, t$panel.grid.major$colour, "grey90")
minor_size <- nulldef(t$panel.grid.minor$size, .125)
major_size <- nulldef(t$panel.grid.major$size, minor_size * 1.5)
size <- major_size * 1.5
geom_hline(yintercept = yintercept, color = color, size = size)
}
check_se_argument <- function(se, type = NULL) {
if (!is.null(se) && !is.null(type) && type %in% c("std", "std2")) {
warning("No robust standard errors for `type = \"std\"` or `type = \"std2\"`.")
se <- NULL
}
if (!is.null(se) && !is.null(type) && type == "re") {
warning("No robust standard errors for `type = \"re\"`.")
se <- NULL
}
se
}
list.depth <- function(this, thisdepth = 0) {
# http://stackoverflow.com/a/13433689/1270695
if (!is.list(this)) {
return(thisdepth)
} else {
return(max(unlist(lapply(this, list.depth, thisdepth = thisdepth + 1))))
}
}
#' @importFrom purrr map flatten_chr
#' @importFrom sjmisc is_empty trim
parse_terms <- function(x) {
if (sjmisc::is_empty(x)) return(x)
# get variable with suffix
vars.pos <-
which(as.vector(regexpr(
pattern = " ([^\\]]*)\\]",
text = x,
perl = T
)) != -1)
# is empty?
if (sjmisc::is_empty(vars.pos)) return(x)
# get variable names. needed later to set as
# names attributes
vars.names <- clear_terms(x)[vars.pos]
# get levels inside brackets
tmp <- unlist(regmatches(
x,
gregexpr(
pattern = " ([^\\]]*)\\]",
text = x,
perl = T
)
))
# remove brackets
tmp <- gsub("(\\[*)(\\]*)", "", tmp)
# see if we have multiple values, split at comma
tmp <- sjmisc::trim(strsplit(tmp, ",", fixed = T))
parsed.terms <- seq_len(length(tmp)) %>%
purrr::map(~ sprintf("%s%s", vars.names[.x], tmp[[.x]])) %>%
purrr::flatten_chr()
c(x[-vars.pos], parsed.terms)
}
#' @importFrom sjmisc trim
clear_terms <- function(x) {
# get positions of variable names and see if we have
# a suffix for certain values
cleaned.pos <- regexpr(pattern = "\\s", x)
# position "-1" means we only had variable name, no suffix
replacers <- which(cleaned.pos == -1)
# replace -1 with number of chars
cleaned.pos[replacers] <- nchar(x)[replacers]
# get variable names only
sjmisc::trim(substr(x, 0, cleaned.pos))
}
#' @importFrom purrr map_lgl
#' @importFrom sjmisc is_empty
is_empty_list <- function(x) {
all(purrr::map_lgl(x, sjmisc::is_empty))
}
model_deviance <- function(x) {
tryCatch(
{
m_deviance(x)
},
error = function(x) { NULL }
)
}
#' @importFrom performance performance_aic
model_aic <- function(x) {
performance::performance_aic(x)
}
#' @importFrom performance performance_aicc
model_aicc <- function(x) {
tryCatch(
{
performance::performance_aicc(x)
},
error = function(x) { NULL }
)
}
#' @importFrom stats logLik
model_loglik <- function(x) {
tryCatch(
{
stats::logLik(x)
},
error = function(x) { NULL }
)
}
#' @importFrom stats deviance
m_deviance <- function(x) {
if (is_merMod(x)) {
if (!requireNamespace("lme4", quietly = TRUE)) {
stop("Package 'lme4' required for this function to work, please install it.")
}
d <- lme4::getME(x, "devcomp")$cmp["dev"]
if (is.na(d)) d <- stats::deviance(x, REML = FALSE)
} else {
d <- stats::deviance(x)
}
d
}
#' @importFrom purrr map as_vector
tidy_label <- function(labs, sep = ".") {
# create table, and check if any value label is duplicated
duped.val <- names(which(table(labs) > 1))
# find position of duplicated labels
dupes <- duped.val %>%
purrr::map(~which(labs == .x)) %>%
purrr::as_vector(.type = "double")
# prefix labels with value
labs[dupes] <- sprintf("%s%s%s", labs[dupes], sep, dupes)
labs
}
se_ranef <- function(object) {
if (!requireNamespace("lme4", quietly = TRUE)) {
stop("Package 'lme4' required for this function to work, please install it.")
}
if (inherits(object, "MixMod")) {
se.bygroup <- lme4::ranef(object, post_vars = TRUE)
vars.m <- attr(se.bygroup, "post_vars")
if (dim(vars.m[[1]])[1] == 1)
se.bygroup <- sqrt(unlist(vars.m))
else {
se.bygroup <- do.call(
rbind,
purrr::map_df(vars.m, ~ t(as.data.frame(sqrt(diag(.x)))))
)
dimnames(se.bygroup)[[2]] <- dimnames(vars.m[[1]])[[1]]
se.bygroup <- list(se.bygroup)
names(se.bygroup) <- insight::find_random(object, flatten = TRUE)
}
} else {
se.bygroup <- lme4::ranef(object, condVar = TRUE)
n.groupings <- length(se.bygroup)
for (m in 1:n.groupings) {
vars.m <- attr(se.bygroup[[m]], "postVar")
K <- dim(vars.m)[1]
J <- dim(vars.m)[3]
names.full <- dimnames(se.bygroup[[m]])
se.bygroup[[m]] <- array(NA, c(J, K))
for (j in 1:J) {
se.bygroup[[m]][j, ] <- sqrt(diag(as.matrix(vars.m[, , j])))
}
dimnames(se.bygroup[[m]]) <- list(names.full[[1]], names.full[[2]])
}
}
se.bygroup
}
get_observations <- function(model) {
tryCatch(
{
insight::n_obs(model)
},
error = function(x) { NULL }
)
}
.labelled_model_data <- function(models) {
# to be generic, make sure argument is a list
if (!inherits(models, "list")) models <- list(models)
# get model terms and model frame
mf <- try(lapply(models, function(.x) insight::get_data(.x, verbose = FALSE)[, -1, drop = FALSE]), silent = TRUE)
# return NULL on error
if (inherits(mf, "try-error")) {
return(FALSE)
}
# get all variable labels for predictors
lbs <- unlist(lapply(mf, function(x) {
any(sapply(x, function(i) !is.null(attributes(i)$label)))
}))
any(lbs)
}
|