File: skim_with.R

package info (click to toggle)
r-cran-skimr 2.1.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,188 kB
  • sloc: sh: 13; makefile: 2
file content (404 lines) | stat: -rw-r--r-- 13,480 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#' Set or add the summary functions for a particular type of data
#'
#' While skim is designed around having an opinionated set of defaults, you
#' can use this function to change the summary statistics that it returns.
#'
#' `skim_with()` is a closure: a function that returns a new function. This
#' lets you have several skimming functions in a single R session, but it
#' also means that you need to assign the return of `skim_with()` before
#' you can use it.
#'
#' You assign values within `skim_with` by using the [sfl()] helper (`skimr`
#' function list). This helper behaves mostly like [dplyr::funs()], but lets
#' you also identify which skimming functions you want to remove, by setting
#' them to `NULL`. Assign an `sfl` to each column type that you wish to modify.
#'
#' Functions that summarize all data types, and always return the same type
#' of value, can be assigned to the `base` argument. The default base skimmers
#' compute the number of missing values [n_missing()] and the rate of values
#' being complete, i.e. not missing, [complete_rate()].
#'
#' When `append = TRUE` and local skimmers have names matching the names of
#' entries in the default `skim_function_list`, the values in the default list
#' are overwritten. Similarly, if `NULL` values are passed within `sfl()`, these
#' default skimmers are dropped. Otherwise, if `append = FALSE`, only the
#' locally-provided skimming functions are used.
#'
#' Note that `append` only applies to the `typed` skimmers (i.e. non-base).
#' See [get_default_skimmer_names()] for a list of defaults.
#'
#' @param ... One or more (`sfl`) `skimmer_function_list` objects, with an
#'   argument name that matches a particular data type.
#' @param base An `sfl` that sets skimmers for all column types.
#' @param append Whether the provided options should be in addition to the
#'   defaults already in `skim`. Default is `TRUE`.
#' @return A new `skim()` function. This is callable. See [skim()] for more
#'   details.
#' @examples
#' # Use new functions for numeric functions. If you don't provide a name,
#' # one will be automatically generated.
#' my_skim <- skim_with(numeric = sfl(median, mad), append = FALSE)
#' my_skim(faithful)
#'
#' # If you want to remove a particular skimmer, set it to NULL
#' # This removes the inline histogram
#' my_skim <- skim_with(numeric = sfl(hist = NULL))
#' my_skim(faithful)
#'
#' # This works with multiple skimmers. Just match names to overwrite
#' my_skim <- skim_with(numeric = sfl(iqr = IQR, p25 = NULL, p75 = NULL))
#' my_skim(faithful)
#'
#' # Alternatively, set `append = FALSE` to replace the skimmers of a type.
#' my_skim <- skim_with(numeric = sfl(mean = mean, sd = sd), append = FALSE)
#'
#' # Skimmers are unary functions. Partially apply arguments during assigment.
#' # For example, you might want to remove NA values.
#' my_skim <- skim_with(numeric = sfl(iqr = ~ IQR(., na.rm = TRUE)))
#'
#' # Set multiple types of skimmers simultaneously.
#' my_skim <- skim_with(numeric = sfl(mean), character = sfl(length))
#'
#' # Or pass the same as a list, unquoting the input.
#' my_skimmers <- list(numeric = sfl(mean), character = sfl(length))
#' my_skim <- skim_with(!!!my_skimmers)
#'
#' # Use the v1 base skimmers instead.
#' my_skim <- skim_with(base = sfl(
#'   missing = n_missing,
#'   complete = n_complete,
#'   n = length
#' ))
#'
#' # Remove the base skimmers entirely
#' my_skim <- skim_with(base = NULL)
#' @export
skim_with <- function(...,
                      base = sfl(
                        n_missing = n_missing,
                        complete_rate = complete_rate
                      ),
                      append = TRUE) {
  stopifnot(is.null(base) || inherits(base, "skimr_function_list"))
  local_skimmers <- validate_assignment(...)

  function(data, ..., .data_name = NULL) {
    if (is.null(.data_name)) {
      .data_name <- rlang::expr_label(substitute(data))
    }

    if (!inherits(data, "data.frame")) {
      data <- as.data.frame(data)
    }
    stopifnot(inherits(data, "data.frame"))

    selected <- names(tidyselect::eval_select(rlang::expr(c(...)), data))
    if (length(selected) == 0) {
      selected <- names(data)
    }

    grps <- dplyr::groups(data)
    if (length(grps) > 0) {
      group_variables <- selected %in% as.character(grps)
      selected <- selected[!group_variables]
    } else {
      attr(data, "groups") <- list()
    }


    skimmers <- purrr::map(
      selected, get_final_skimmers, data, local_skimmers, append
    )
    types <- purrr::map_chr(skimmers, "skim_type")
    unique_skimmers <- reduce_skimmers(skimmers, types)
    combined_skimmers <- purrr::map(unique_skimmers, join_with_base, base)
    ready_to_skim <- tibble::tibble(
      skim_type = unique(types),
      skimmers = purrr::map(combined_skimmers, mangle_names, names(base$funs)),
      skim_variable = split(selected, types)[unique(types)]
    )
    grouped <- dplyr::group_by(ready_to_skim, .data$skim_type)
    nested <- dplyr::summarize(
      grouped,
      skimmed = purrr::map2(
        .data$skimmers, .data$skim_variable, skim_by_type, data
      )
    )
    structure(
      tidyr::unnest(nested, "skimmed"),
      class = c("skim_df", "tbl_df", "tbl", "data.frame"),
      data_rows = nrow(data),
      data_cols = ncol(data),
      df_name = .data_name,
      dt_key  = get_dt_key(data),
      groups = dplyr::group_vars(data),
      base_skimmers = names(base$funs),
      skimmers_used = get_skimmers_used(unique_skimmers)
    )
  }
}

#' Process arguments provided in `skim_with`
#'
#' Make sure that arguments provided in `skim_with()` have names. Also,
#' check if we are defining a new skimming type dynamically.
#'
#' @keywords internal
#' @noRd
validate_assignment <- function(...) {
  to_assign <- rlang::list2(...)

  if (length(to_assign) < 1) {
    return(to_assign)
  }

  # Need to cope with case where ... is a list already
  if (!inherits(to_assign[[1]], "skimr_function_list")) {
    to_assign <- to_assign[[1]]
  }

  proposed_names <- names(to_assign)
  if (!all(nzchar(proposed_names)) || is.null(proposed_names) ||
    anyNA(proposed_names)) {
    stop("skim_with requires all arguments to be named.", call. = FALSE)
  }

  defaults <- get_default_skimmers()
  existing <- proposed_names %in% names(defaults)

  if (!all(existing) & length(defaults) > 0) {
    collapsed <- paste(proposed_names[!existing], collapse = ", ")
    message(
      "Creating new skimming functions for the following classes: ",
      collapsed, ".\nThey did not have recognized defaults. Call ",
      "get_default_skimmers() for more information."
    )
  }
  to_assign
}

#' Sets the appropriate key value when working with `data.table`
#' @keywords internal
#' @noRd
get_dt_key <- function(data) {
  if (inherits(data, "data.table")) {
    dt_key <- data.table::key(data)
    if (is.null(dt_key)) {
      dt_key <- "NULL"
    }
    paste(dt_key, collapse = ", ")
  } else {
    NA # Will never be NA if `data` is a data.table
  }
}

#' Combine local and default skimmers for each column
#'
#' Get the default skimmers for the current column using S3 dispatch for
#' [get_skimmers()]. Get the user-provided local skimmers from [skim_with()].
#' If no local skimmers are provided, use the defaults. Otherwise, merge the
#' local and default skimmers with the following rules.
#'
#'   - If `append = FALSE` of if the local and default types differ, use only
#'     the locals.
#'   - Else, replace the default values with the local values.
#'
#' @param column A character scalar. The column name.
#' @param data The data frame to summarize.
#' @param local_skimmers A list of `sfl` objects. Skimmers defined using
#'   `skim_with()`
#' @param append Same as above.
#' @param base Same as above.
#' @noRd
get_final_skimmers <- function(column, data, local_skimmers, append) {
  defaults <- get_skimmers(data[[column]])
  all_classes <- skim_class(data[[column]])
  locals <- get_local_skimmers(all_classes, local_skimmers)

  if (!nzchar(defaults$skim_type)) {
    msg <- sprintf(
      "Default skimming functions for column [%s] with class [%s]",
      column, paste(all_classes, collapse = ", ")
    )
    stop(msg, " did not have value for its `.class` argument. Please ",
      "investigate the definition of the associated S3 method.",
      call. = FALSE
    )
  }

  if (is.null(locals$funs)) {
    if (defaults$skim_type == "default") {
      msg <- sprintf(
        "Couldn't find skimmers for class: %s;",
        paste(all_classes, collapse = ", ")
      )
      warning(msg,
        " No user-defined `sfl` provided. Falling back to `character`.",
        call. = FALSE
      )
      data[[column]] <- as.character(data[[column]])
      skimmers <- defaults
      skimmers$skim_type <- "character"
    } else {
      skimmers <- defaults
    }
  } else {
    skimmers <- merge_skimmers(locals, defaults, append)
  }
  skimmers
}

skim_class <- function(column) {
  base_class <- class(column)
  if (any(base_class %in% c("double", "integer"))) {
    c(base_class, "numeric")
  } else {
    base_class
  }
}

get_local_skimmers <- function(classes, local_skimmers) {
  local_classes <- intersect(classes, names(local_skimmers))
  if (length(local_classes) == 0) {
    return(NULL)
  }
  
  first_class <- local_classes[[1]]
  
  out <- local_skimmers[[first_class]]
  out$skim_type <- first_class
  out
}

merge_skimmers <- function(locals, defaults, append) {
  if (!append || locals$skim_type != defaults$skim_type) {
    locals
  } else {
    defaults$funs <- purrr::compact(purrr::list_modify(defaults$funs, !!!locals$funs))
    defaults
  }
}

reduce_skimmers <- function(skimmers, types) {
  named <- rlang::set_names(skimmers, types)
  named[unique(types)]
}

join_with_base <- function(skimmers, base) {
  skimmers$funs <- c(base$funs, skimmers$funs)
  skimmers
}

get_skimmers_used <- function(skimmers) {
  types <- names(skimmers)
  function_names <- purrr::map(skimmers, ~ names(.x$funs))
  rlang::set_names(function_names, types)
}

NAME_DELIMETER <- "~!@#$%^&*()-+"
mangle_names <- function(skimmers, base_names) {
  fun_names <- names(skimmers$funs)
  prefixes <- ifelse(
    fun_names %in% base_names,
    NAME_DELIMETER,
    paste0(NAME_DELIMETER, skimmers$skim_type, ".")
  )
  mangled <- paste0(prefixes, fun_names)
  skimmers$funs <- rlang::set_names(skimmers$funs, mangled)
  skimmers
}


#' Generate one or more rows of a `skim_df`, using one column
#'
#' Call all of the skimming functions on the single column, using grouped
#' variants, if necessary.
#'
#' We expect one row per variable/ group. To do this we need to take the
#' processed results, find the appropriate columns for each variable and
#' restack them. This uses a small hack that rests on the naming convention
#' of data frame produced by `summarize_at`, which uses the following scheme:
#'
#'  - `variable_name` + `_` + `function_name`
#'
#' To avoid inappropriately assigning the columns to the wrong variable, we
#' mangle the function names. That way, each set of relevant columns begin
#' with the column name + `_` + our internal delimiter.
#'
#' @param mangled_skimmers The `sfl`'s whose function names have been mangled.
#' @param variable_names The names of columns in the original data, matching a
#'   data type, that will be summarized.
#' @param data The original data.
#' @keywords internal
#' @noRd
skim_by_type <- function(mangled_skimmers, variable_names, data) {
  UseMethod("skim_by_type", data)
}

#' @export
skim_by_type.grouped_df <- function(mangled_skimmers, variable_names, data) {
  group_columns <- dplyr::groups(data)
  grouped <- dplyr::group_by(data, !!!group_columns)
  skimmed <- dplyr::summarize(
    grouped,
    dplyr::across(tidyselect::any_of(variable_names), mangled_skimmers$funs)
  )
  build_results(skimmed, variable_names, group_columns)
}

#' @export
skim_by_type.data.frame <- function(mangled_skimmers, variable_names, data) {
  skimmed <- dplyr::summarize(
    data,
    dplyr::across(tidyselect::any_of(variable_names), mangled_skimmers$funs)
  )
  build_results(skimmed, variable_names, NULL)
}

#' @export
skim_by_type.data.table <- function(mangled_skimmers, variable_names, data) {
  data <- tibble::as_tibble(data)
  skimmed <- dplyr::summarize(
    data,
    dplyr::across(tidyselect::any_of(variable_names), mangled_skimmers$funs)
  )
  build_results(skimmed, variable_names, NULL)
}

#' Summarize returns a single row data frame, make it tall.
#' @noRd
build_results <- function(skimmed, variable_names, groups) {
  if (length(variable_names) > 1) {
    out <- tibble::tibble(
      skim_variable = variable_names,
      by_variable = purrr::map(variable_names, reshape_skimmed, skimmed, groups)
    )
    tidyr::unnest(out, "by_variable")
  } else {
    out <- dplyr::select(
      as.data.frame(skimmed),
      !!!groups,
      tidyselect::contains(NAME_DELIMETER)
    )
    tibble::tibble(
      skim_variable = variable_names,
      !!!set_clean_names(out)
    )
  }
}

reshape_skimmed <- function(column, skimmed, groups) {
  delim_name <- paste0(column, "_", NAME_DELIMETER)
  out <- dplyr::select(
    tibble::as_tibble(skimmed),
    !!!groups,
    tidyselect::starts_with(delim_name, ignore.case = FALSE)
  )
  set_clean_names(out)
}

set_clean_names <- function(out) {
  separated <- strsplit(names(out), NAME_DELIMETER, fixed = TRUE)
  clean_names <- purrr::map_chr(separated, ~ .x[length(.x)])
  rlang::set_names(out, clean_names)
}