1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
---
title: "sp Gallery"
output:
html_document:
toc: true
toc_float:
collapsed: false
smooth_scroll: false
toc_depth: 2
vignette: >
%\VignetteIndexEntry{sp map gallery}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
# Plotting maps with `sp`
This document shows example images created with objects
represented by one of the classes for spatial data in
packages sp.
## Loading data and packages
The Meuse data set is loaded using a demo script in package `sp`,
```{r}
library(sp)
demo(meuse, ask = FALSE, echo = FALSE) # loads the meuse data sets
class(meuse)
```
The North Carolina SIDS (sudden infant death syndrome) data set
is available from package `sf`, and is loaded by
```{r}
library(sf)
nc <- as(st_read(system.file("gpkg/nc.gpkg", package="sf")), "Spatial")
```
## Using base plot
The basic `plot` command on a `Spatial` object gives just the geometry, without axes:
```{r}
plot(meuse)
```
axes can be added when `axes=TRUE` is given; plot elements can be added incrementally:
```{r}
plot(meuse, pch = 1, cex = sqrt(meuse$zinc)/12, axes = TRUE)
v = c(100,200,400,800,1600)
legend("topleft", legend = v, pch = 1, pt.cex = sqrt(v)/12)
plot(meuse.riv, add = TRUE, col = grey(.9, alpha = .5))
```
For local projection systems, such as in this case
```{r}
proj4string(meuse)
```
the aspect ratio is set to 1, to make sure that one unit north
equals one unit east. Even if the data are in long/lat degrees,
an aspect ratio is chosen such that in the middle of the plot one
unit north approximates one unit east. For small regions, this works
pretty well; also note the degree symbols in the axes tic marks:
```{r, fig.height=8}
crs.longlat = CRS("+init=epsg:4326")
meuse.longlat = spTransform(meuse, crs.longlat)
plot(meuse.longlat, axes = TRUE)
```
which looks different from the plot where one degree north (latitude) equals one
degree east (longitude):
```{r}
par(mar = rep(0,4))
plot(meuse.longlat, asp = 1)
```
## Graticules
Instead of axes with ticks and tick marks, maps often have
graticules, a grid with constant longitude and latitude lines.
`sp` provides several helper functions to add graticules, either
in the local reference system, or in long/lat. Here is an
example of the local reference system:
```{r, fig.height=7.5}
par(mar = c(0, 0, 1, 0))
library(methods) # as
plot(as(meuse, "Spatial"), expandBB = c(.05, 0, 0, 0))
plot(gridlines(meuse), add = TRUE, col = grey(.8))
plot(meuse, add = TRUE)
text(labels(gridlines(meuse)), col = grey(.7))
title("default gridlines with Meuse projected data")
```
```{r}
par(mar = c(0, 0, 1, 0))
grd <- gridlines(meuse.longlat)
grd_x <- spTransform(grd, CRS(proj4string(meuse)))
plot(as(meuse, "Spatial"), expandBB = c(.05, 0, 0, 0))
plot(grd_x, add=TRUE, col = grey(.8))
plot(meuse, add = TRUE)
text(labels(grd_x, crs.longlat), col = grey(.7))
title("longitude latitude gridlines and labels")
```
These lines look pretty straight, because it concerns a small area.
For
```{r}
# demonstrate axis labels with angle, both sides:
maps2sp = function(xlim, ylim, l.out = 100, clip = TRUE) {
stopifnot(require(maps))
m = map(xlim = xlim, ylim = ylim, plot = FALSE, fill = TRUE)
as(st_as_sf(m), "Spatial")
}
par(mar = c(0, 0, 1, 0))
m = maps2sp(c(-100,-20), c(10,55))
sp = SpatialPoints(rbind(c(-101,9), c(-101,55), c(-19,9), c(-19,55)), CRS("+init=epsg:4326"))
laea = CRS("+proj=laea +lat_0=30 +lon_0=-40")
m.laea = spTransform(m, laea)
sp.laea = spTransform(sp, laea)
plot(as(m.laea, "Spatial"), expandBB = c(.1, 0.05, .1, .1))
plot(m.laea, col = grey(.8), add = TRUE)
gl = gridlines(sp, easts = c(-100,-80,-60,-40,-20), norths = c(20,30,40,50))
gl.laea = spTransform(gl, laea)
plot(gl.laea, add = TRUE)
text(labels(gl.laea, crs.longlat))
text(labels(gl.laea, crs.longlat, side = 3:4), col = 'red')
title("curved text label demo")
# polar:
par(mar = c(0, 0, 1, 0))
pts=SpatialPoints(rbind(c(-180,-70),c(0,-70),c(180,-89),c(180,-70)), CRS("+init=epsg:4326"))
gl = gridlines(pts, easts = seq(-180,180,20), ndiscr = 100)
polar = CRS("+init=epsg:3031")
plot(spTransform(pts, polar), expandBB = c(.05, 0, .05, 0))
gl.polar = spTransform(gl, polar)
lines(gl.polar)
l = labels(gl.polar, crs.longlat, side = 3)
l$pos = NULL # pos is too simple, use adj:
text(l, adj = c(0.5, -0.5), cex = .8)
l = labels(gl.polar, crs.longlat, side = 4)
l$srt = 0 # otherwise they end up upside-down
text(l, cex = .8)
title("grid line labels on polar projection, epsg 3031")
par(mar = c(0, 0, 1, 0))
m = maps2sp(xlim = c(-180,180), ylim = c(-90,-70), clip = FALSE)
gl = gridlines(m, easts = seq(-180,180,20))
polar = CRS("+init=epsg:3031")
gl.polar = spTransform(gl, polar)
plot(as(gl.polar, "Spatial"), expandBB = c(.05, 0, .05, 0))
plot(gl.polar, add = TRUE)
plot(spTransform(m, polar), add = TRUE, col = grey(0.8, 0.8))
l = labels(gl.polar, crs.longlat, side = 3)
# pos is too simple here, use adj:
l$pos = NULL
text(l, adj = c(0.5, -0.3), cex = .8)
l = labels(gl.polar, crs.longlat, side = 2)
l$srt = 0 # otherwise they are upside-down
text(l, cex = .8)
title("grid line labels on polar projection, epsg 3031")
```
## Other spatial objects in base plot
The following plot shows polygons with county name as labels at
their center point:
```{r}
par(mar = c(0, 0, 1, 0))
plot(nc)
invisible(text(coordinates(nc), labels=as.character(nc$NAME), cex=0.4))
```
This plot of a `SpatialPolygonsDataFrame` uses grey shades:
```{r}
names(nc)
rrt <- nc$SID74/nc$BIR74
brks <- quantile(rrt, seq(0,1,1/7))
cols <- grey((length(brks):2)/length(brks))
dens <- (2:length(brks))*3
par(mar = c(0, 0, 1, 0))
plot(nc, col=cols[findInterval(rrt, brks, all.inside=TRUE)])
```
The following plot shows a `SpatialPolygonsDataFrame`, using line densities
```{r}
rrt <- nc$SID74/nc$BIR74
brks <- quantile(rrt, seq(0,1,1/7))
cols <- grey((length(brks):2)/length(brks))
dens <- (2:length(brks))*3
par(mar = rep(0,4))
plot(nc, density=dens[findInterval(rrt, brks, all.inside=TRUE)])
```
Plot/image of a grid file, using base plot methods:
```{r}
image(meuse.grid)
```
```{r}
plot(meuse.grid["dist"])
points(meuse, col = 'green')
```
```{r}
plot(meuse.grid["dist"], zlim = c(0,1))
plot(geometry(meuse.grid), add = TRUE, col = grey(.8))
```
Read
[this](https://r-spatial.org/r/2016/03/08/plotting-spatial-grids.html)
blog post to find out more about the options available (and
limitations) for plotting gridded data with base plot methods in sp.
## using lattice plot (spplot)
The following plot colours points with a legend in the plotting area and adds scales:
```{r}
spplot(meuse, "zinc", do.log = TRUE,
key.space=list(x = 0.1, y = 0.95, corner = c(0, 1)),
scales=list(draw = TRUE))
```
The following plot has coloured points plot with legend in plotting area and scales;
it has a non-default number of cuts with user-supplied legend entries:
```{r}
spplot(meuse, "zinc", do.log = TRUE,
key.space=list(x=0.2,y=0.9,corner=c(0,1)),
scales=list(draw = TRUE), cuts = 3,
legendEntries = c("low", "intermediate", "high"))
```
The following plot adds a scale bar and north arrow:
```{r}
scale = list("SpatialPolygonsRescale", layout.scale.bar(),
offset = c(178600,332490), scale = 500, fill=c("transparent","black"))
text1 = list("sp.text", c(178600,332590), "0")
text2 = list("sp.text", c(179100,332590), "500 m")
arrow = list("SpatialPolygonsRescale", layout.north.arrow(),
offset = c(178750,332000), scale = 400)
spplot(meuse, "zinc", do.log=T,
key.space=list(x=0.1,y=0.93,corner=c(0,1)),
sp.layout=list(scale,text1,text2,arrow),
main = "Zinc (top soil)")
```
The following plot has north arrow and text outside panels
```{r}
rv = list("sp.polygons", meuse.riv, fill = "lightblue")
scale = list("SpatialPolygonsRescale", layout.scale.bar(),
offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 1)
text1 = list("sp.text", c(180500,329900), "0", which = 1)
text2 = list("sp.text", c(181000,329900), "500 m", which = 1)
arrow = list("SpatialPolygonsRescale", layout.north.arrow(),
offset = c(178750,332500), scale = 400)
spplot(meuse["zinc"], do.log = TRUE,
key.space = "bottom",
sp.layout = list(rv, scale, text1, text2),
main = "Zinc (top soil)",
legend = list(right = list(fun = mapLegendGrob(layout.north.arrow()))))
```
The same plot; north arrow now inside panel, with custom panel function instead of sp.layout
```{r}
spplot(meuse, "zinc", panel = function(x, y, ...) {
sp.polygons(meuse.riv, fill = "lightblue")
SpatialPolygonsRescale(layout.scale.bar(), offset = c(179900,329600),
scale = 500, fill=c("transparent","black"))
sp.text(c(179900,329700), "0")
sp.text(c(180400,329700), "500 m")
SpatialPolygonsRescale(layout.north.arrow(),
offset = c(178750,332500), scale = 400)
panel.pointsplot(x, y, ...)
},
do.log = TRUE, cuts = 7,
key.space = list(x = 0.1, y = 0.93, corner = c(0,1)),
main = "Top soil zinc concentration (ppm)")
```
A multi-panel plot, scales + north arrow only in last plot: using
the `which` argument in a layout component (if `which=4` was set
as list component of sp.layout, the river would as well be drawn
only in that (last) panel)
```{r}
rv = list("sp.polygons", meuse.riv, fill = "lightblue")
scale = list("SpatialPolygonsRescale", layout.scale.bar(),
offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 4)
text1 = list("sp.text", c(180500,329900), "0", cex = .5, which = 4)
text2 = list("sp.text", c(181000,329900), "500 m", cex = .5, which = 4)
arrow = list("SpatialPolygonsRescale", layout.north.arrow(),
offset = c(181300,329800),
scale = 400, which = 4)
cuts = c(.2,.5,1,2,5,10,20,50,100,200,500,1000,2000)
spplot(meuse, c("cadmium", "copper", "lead", "zinc"), do.log = TRUE,
key.space = "right", as.table = TRUE,
sp.layout=list(rv, scale, text1, text2, arrow), # note that rv is up front!
main = "Heavy metals (top soil), ppm", cex = .7, cuts = cuts)
```
Comparing four kriging varieties in a multi-panel plot with shared scale:
```{r}
rv = list("sp.polygons", meuse.riv, fill = "blue", alpha = 0.1)
pts = list("sp.points", meuse, pch = 3, col = "grey", alpha = .5)
text1 = list("sp.text", c(180500,329900), "0", cex = .5, which = 4)
text2 = list("sp.text", c(181000,329900), "500 m", cex = .5, which = 4)
scale = list("SpatialPolygonsRescale", layout.scale.bar(),
offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 4)
library(gstat)
v.ok = variogram(log(zinc)~1, meuse)
ok.model = fit.variogram(v.ok, vgm(1, "Exp", 500, 1))
# plot(v.ok, ok.model, main = "ordinary kriging")
v.uk = variogram(log(zinc)~sqrt(dist), meuse)
uk.model = fit.variogram(v.uk, vgm(1, "Exp", 300, 1))
# plot(v.uk, uk.model, main = "universal kriging")
meuse[["ff"]] = factor(meuse[["ffreq"]])
meuse.grid[["ff"]] = factor(meuse.grid[["ffreq"]])
v.sk = variogram(log(zinc)~ff, meuse)
sk.model = fit.variogram(v.sk, vgm(1, "Exp", 300, 1))
# plot(v.sk, sk.model, main = "stratified kriging")
zn.ok = krige(log(zinc)~1, meuse, meuse.grid, model = ok.model, debug.level = 0)
zn.uk = krige(log(zinc)~sqrt(dist), meuse, meuse.grid, model = uk.model, debug.level = 0)
zn.sk = krige(log(zinc)~ff, meuse, meuse.grid, model = sk.model, debug.level = 0)
zn.id = krige(log(zinc)~1, meuse, meuse.grid, debug.level = 0)
zn = zn.ok
zn[["a"]] = zn.ok[["var1.pred"]]
zn[["b"]] = zn.uk[["var1.pred"]]
zn[["c"]] = zn.sk[["var1.pred"]]
zn[["d"]] = zn.id[["var1.pred"]]
spplot(zn, c("a", "b", "c", "d"),
names.attr = c("ordinary kriging", "universal kriging with dist to river",
"stratified kriging with flood freq", "inverse distance"),
as.table = TRUE, main = "log-zinc interpolation",
sp.layout = list(rv, scale, text1, text2)
)
```
Reuse these results; universal kriging standard errors; grid plot
with point locations and polygon (river):
```{r}
rv = list("sp.polygons", meuse.riv, fill = "blue", alpha = 0.1)
pts = list("sp.points", meuse, pch = 3, col = "grey", alpha = .7)
spplot(zn.uk, "var1.pred",
sp.layout = list(rv, scale, text1, text2, pts),
main = "log(zinc); universal kriging using sqrt(dist to Meuse)")
zn.uk[["se"]] = sqrt(zn.uk[["var1.var"]])
spplot(zn.uk, "se", sp.layout = list(rv, pts),
main = "log(zinc); universal kriging standard errors")
```
```{r}
arrow = list("SpatialPolygonsRescale", layout.north.arrow(),
offset = c(-76,34), scale = 0.5, which = 2)
spplot(nc, c("SID74", "SID79"), names.attr = c("1974","1979"),
colorkey=list(space="bottom"), scales = list(draw = TRUE),
main = "SIDS (sudden infant death syndrome) in North Carolina",
sp.layout = list(arrow), as.table = TRUE)
```
```{r}
arrow = list("SpatialPolygonsRescale", layout.north.arrow(),
offset = c(-76,34), scale = 0.5, which = 2)
#scale = list("SpatialPolygonsRescale", layout.scale.bar(),
# offset = c(-77.5,34), scale = 1, fill=c("transparent","black"), which = 2)
#text1 = list("sp.text", c(-77.5,34.15), "0", which = 2)
#text2 = list("sp.text", c(-76.5,34.15), "1 degree", which = 2)
# create a fake lines data set:
## multi-panel plot with coloured lines: North Carolina SIDS
spplot(nc, c("SID74","SID79"), names.attr = c("1974","1979"),
colorkey=list(space="bottom"),
main = "SIDS (sudden infant death syndrome) in North Carolina",
sp.layout = arrow, as.table = TRUE)
```
Bubble plots for cadmium and zinc:
```{r}
b1 = bubble(meuse, "cadmium", maxsize = 1.5, main = "cadmium concentrations (ppm)",
key.entries = 2^(-1:4))
b2 = bubble(meuse, "zinc", maxsize = 1.5, main = "zinc concentrations (ppm)",
key.entries = 100 * 2^(0:4))
print(b1, split = c(1,1,2,1), more = TRUE)
print(b2, split = c(2,1,2,1), more = FALSE)
```
Factor variables using `spplot`:
```{r}
# create two dummy factor variables, with equal labels:
set.seed(31)
nc$f = factor(sample(1:5, 100,replace = TRUE),labels=letters[1:5])
nc$g = factor(sample(1:5, 100,replace = TRUE),labels=letters[1:5])
library(RColorBrewer)
## Two (dummy) factor variables shown with qualitative colour ramp; degrees in axes
spplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE))
```
## maps using ggplot2
(it is recommended to migrate to `sf`, and use `geom_sf()` for this)
## Interactive maps: leaflet, mapview
R packages leaflet and mapview provide interactive, browser-based
maps building upon the leaflet javascript library. Example with
points, grid and polygons follow:
```{r, results="markup"}
library(mapview)
mapview(meuse, zcol = c("zinc", "lead"), legend = TRUE)
```
```{r, results="markup"}
mapview(meuse.grid, zcol = c("soil", "dist"), legend = TRUE)
```
```{r, results="markup"}
mapview(nc, zcol = c("SID74", "SID79"), alpha.regions = 1.0, legend = TRUE)
```
Mapview also allows grids of view that are synced
```{r, results="markup",eval=FALSE}
m1 <- mapview(meuse, zcol = "soil", burst = TRUE, legend = TRUE)
m2 <- mapview(meuse, zcol = "lead", legend = TRUE)
m3 <- mapview(meuse, zcol = "landuse", map.types = "Esri.WorldImagery", legend = TRUE)
m4 <- mapview(meuse, zcol = "dist.m", legend = TRUE)
sync(m1, m2, m3, m4) # 4 panels synchronised
# latticeView(m1, m2, m3, m4) # 4 panels
```
more examples are found [here](https://environmentalinformatics-marburg.github.io/web-presentations/20150723_mapView.html).
## SessionInfo
```{r}
sessionInfo()
```
|