File: sp_gallery.Rmd

package info (click to toggle)
r-cran-sp 1%3A2.2-0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,856 kB
  • sloc: ansic: 1,091; sh: 14; makefile: 2
file content (457 lines) | stat: -rw-r--r-- 15,273 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
---
title: "sp Gallery"
output:
  html_document:
    toc: true
    toc_float:
      collapsed: false
      smooth_scroll: false
    toc_depth: 2
vignette: >
  %\VignetteIndexEntry{sp map gallery}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

# Plotting maps with `sp`

This  document shows example images created with objects
represented by one of the classes for spatial data in
packages sp. 

## Loading data and packages

The Meuse data set is loaded using a demo script in package `sp`,
```{r}
library(sp)
demo(meuse, ask = FALSE, echo = FALSE) # loads the meuse data sets
class(meuse)
```

The North Carolina SIDS (sudden infant death syndrome) data set
is available from package `sf`, and is loaded by

```{r}
library(sf)
nc <- as(st_read(system.file("gpkg/nc.gpkg", package="sf")), "Spatial")
```

## Using base plot

The basic `plot` command on a `Spatial` object gives just the geometry, without axes:

```{r}
plot(meuse)
```

axes can be added when `axes=TRUE` is given; plot elements can be added incrementally:

```{r}
plot(meuse, pch = 1, cex = sqrt(meuse$zinc)/12, axes = TRUE)
v = c(100,200,400,800,1600)
legend("topleft", legend = v, pch = 1, pt.cex = sqrt(v)/12)
plot(meuse.riv, add = TRUE, col = grey(.9, alpha = .5))
```

For local projection systems, such as in this case

```{r}
proj4string(meuse)
```

the aspect ratio is set to 1, to make sure that one unit north
equals one unit east.  Even if the data are in long/lat degrees,
an aspect ratio is chosen such that in the middle of the plot one
unit north approximates one unit east. For small regions, this works
pretty well; also note the degree symbols in the axes tic marks:

```{r, fig.height=8}
crs.longlat = CRS("+init=epsg:4326")
meuse.longlat = spTransform(meuse, crs.longlat)
plot(meuse.longlat, axes = TRUE)
```

which looks different from the plot where one degree north (latitude) equals one
degree east (longitude):

```{r}
par(mar = rep(0,4))
plot(meuse.longlat, asp = 1)
```

## Graticules 

Instead of axes with ticks and tick marks, maps often have
graticules, a grid with constant longitude and latitude lines.
`sp` provides several helper functions to add graticules, either
in the local reference system, or in long/lat. Here is an
example of the local reference system:

```{r, fig.height=7.5}
par(mar = c(0, 0, 1, 0))
library(methods) # as
plot(as(meuse, "Spatial"), expandBB = c(.05, 0, 0, 0))
plot(gridlines(meuse), add = TRUE, col = grey(.8))
plot(meuse, add = TRUE)
text(labels(gridlines(meuse)), col = grey(.7))
title("default gridlines with Meuse projected data")
```

```{r}
par(mar = c(0, 0, 1, 0))
grd <- gridlines(meuse.longlat)
grd_x <- spTransform(grd, CRS(proj4string(meuse)))
plot(as(meuse, "Spatial"), expandBB = c(.05, 0, 0, 0))
plot(grd_x, add=TRUE, col = grey(.8))
plot(meuse, add = TRUE)
text(labels(grd_x, crs.longlat), col = grey(.7))
title("longitude latitude gridlines and labels")
```

These lines look pretty straight, because it concerns a small area.
For 

```{r}
# demonstrate axis labels with angle, both sides:

maps2sp = function(xlim, ylim, l.out = 100, clip = TRUE) {
	stopifnot(require(maps))
	m = map(xlim = xlim, ylim = ylim, plot = FALSE, fill = TRUE)
	as(st_as_sf(m), "Spatial")
}
par(mar = c(0, 0, 1, 0))
m = maps2sp(c(-100,-20), c(10,55))
sp = SpatialPoints(rbind(c(-101,9), c(-101,55), c(-19,9), c(-19,55)), CRS("+init=epsg:4326"))
laea = CRS("+proj=laea +lat_0=30 +lon_0=-40")
m.laea = spTransform(m, laea)
sp.laea = spTransform(sp, laea)
plot(as(m.laea, "Spatial"), expandBB = c(.1, 0.05, .1, .1))
plot(m.laea, col = grey(.8), add = TRUE)
gl = gridlines(sp, easts = c(-100,-80,-60,-40,-20), norths = c(20,30,40,50))
gl.laea = spTransform(gl, laea)
plot(gl.laea, add = TRUE)
text(labels(gl.laea, crs.longlat))
text(labels(gl.laea, crs.longlat, side = 3:4), col = 'red')
title("curved text label demo")

# polar:
par(mar = c(0, 0, 1, 0))
pts=SpatialPoints(rbind(c(-180,-70),c(0,-70),c(180,-89),c(180,-70)), CRS("+init=epsg:4326"))
gl = gridlines(pts, easts = seq(-180,180,20), ndiscr = 100)
polar = CRS("+init=epsg:3031")
plot(spTransform(pts, polar), expandBB = c(.05, 0, .05, 0))
gl.polar = spTransform(gl, polar)
lines(gl.polar)
l = labels(gl.polar, crs.longlat, side = 3)
l$pos = NULL # pos is too simple, use adj:
text(l, adj = c(0.5, -0.5), cex = .8) 
l = labels(gl.polar, crs.longlat, side = 4)
l$srt = 0 # otherwise they end up upside-down
text(l, cex = .8)
title("grid line labels on polar projection, epsg 3031")

par(mar = c(0, 0, 1, 0))
m = maps2sp(xlim = c(-180,180), ylim = c(-90,-70), clip = FALSE)
gl = gridlines(m, easts = seq(-180,180,20))
polar = CRS("+init=epsg:3031")
gl.polar = spTransform(gl, polar)
plot(as(gl.polar, "Spatial"), expandBB = c(.05, 0, .05, 0))
plot(gl.polar, add = TRUE)
plot(spTransform(m, polar), add = TRUE, col = grey(0.8, 0.8))
l = labels(gl.polar, crs.longlat, side = 3)
# pos is too simple here, use adj:
l$pos = NULL 
text(l, adj = c(0.5, -0.3), cex = .8)
l = labels(gl.polar, crs.longlat, side = 2)
l$srt = 0 # otherwise they are upside-down
text(l, cex = .8)
title("grid line labels on polar projection, epsg 3031")

```

## Other spatial objects in base plot

The following plot shows polygons with county name as labels at
their center point:

```{r}
par(mar = c(0, 0, 1, 0))
plot(nc)
invisible(text(coordinates(nc), labels=as.character(nc$NAME), cex=0.4))
```

This plot of a `SpatialPolygonsDataFrame` uses grey shades:

```{r}
names(nc)
rrt <- nc$SID74/nc$BIR74
brks <- quantile(rrt, seq(0,1,1/7))
cols <- grey((length(brks):2)/length(brks))
dens <- (2:length(brks))*3
par(mar = c(0, 0, 1, 0))
plot(nc, col=cols[findInterval(rrt, brks, all.inside=TRUE)])
```

The following plot shows a `SpatialPolygonsDataFrame`, using line densities

```{r}
rrt <- nc$SID74/nc$BIR74
brks <- quantile(rrt, seq(0,1,1/7))
cols <- grey((length(brks):2)/length(brks))
dens <- (2:length(brks))*3
par(mar = rep(0,4))
plot(nc, density=dens[findInterval(rrt, brks, all.inside=TRUE)])
```

Plot/image of a grid file, using base plot methods:

```{r}
image(meuse.grid)
```

```{r}
plot(meuse.grid["dist"])
points(meuse, col = 'green')
```

```{r}
plot(meuse.grid["dist"], zlim = c(0,1))
plot(geometry(meuse.grid), add = TRUE, col = grey(.8))
```

Read
[this](https://r-spatial.org/r/2016/03/08/plotting-spatial-grids.html)
blog post to find out more about the options available (and
limitations) for plotting gridded data with base plot methods in sp.

## using lattice plot (spplot)

The following plot colours points with a legend in the plotting area and adds scales:

```{r}
spplot(meuse, "zinc", do.log = TRUE,
	key.space=list(x = 0.1, y = 0.95, corner = c(0, 1)),
	scales=list(draw = TRUE))
```

The following plot has coloured points plot with legend in plotting area and scales;
it has a non-default number of cuts with user-supplied legend entries:
```{r}
spplot(meuse, "zinc", do.log = TRUE,
	key.space=list(x=0.2,y=0.9,corner=c(0,1)),
	scales=list(draw = TRUE), cuts = 3,
	legendEntries = c("low", "intermediate", "high"))
```

The following plot adds a scale bar and north arrow:

```{r}
scale = list("SpatialPolygonsRescale", layout.scale.bar(), 
	offset = c(178600,332490), scale = 500, fill=c("transparent","black"))
text1 = list("sp.text", c(178600,332590), "0")
text2 = list("sp.text", c(179100,332590), "500 m")
arrow = list("SpatialPolygonsRescale", layout.north.arrow(), 
	offset = c(178750,332000), scale = 400)
spplot(meuse, "zinc", do.log=T,
	key.space=list(x=0.1,y=0.93,corner=c(0,1)),
	sp.layout=list(scale,text1,text2,arrow),
	main = "Zinc (top soil)")
```

The following plot has north arrow and text outside panels

```{r}
rv = list("sp.polygons", meuse.riv, fill = "lightblue")
scale = list("SpatialPolygonsRescale", layout.scale.bar(), 
	offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 1)
text1 = list("sp.text", c(180500,329900), "0", which = 1)
text2 = list("sp.text", c(181000,329900), "500 m", which = 1)
arrow = list("SpatialPolygonsRescale", layout.north.arrow(), 
	offset = c(178750,332500), scale = 400)
spplot(meuse["zinc"], do.log = TRUE,
	key.space = "bottom", 
	sp.layout = list(rv, scale, text1, text2),
	main = "Zinc (top soil)",
	legend = list(right = list(fun = mapLegendGrob(layout.north.arrow()))))
```

The same plot; north arrow now inside panel, with custom panel function instead of sp.layout

```{r}
spplot(meuse, "zinc", panel = function(x, y, ...) {
		sp.polygons(meuse.riv, fill = "lightblue")
		SpatialPolygonsRescale(layout.scale.bar(), offset = c(179900,329600), 
			scale = 500, fill=c("transparent","black"))
		sp.text(c(179900,329700), "0")
		sp.text(c(180400,329700), "500 m")
		SpatialPolygonsRescale(layout.north.arrow(), 
			offset = c(178750,332500), scale = 400)
		panel.pointsplot(x, y, ...)
	},
	do.log = TRUE, cuts = 7,
	key.space = list(x = 0.1, y = 0.93, corner = c(0,1)),
	main = "Top soil zinc concentration (ppm)")
```

A multi-panel plot, scales + north arrow only in last plot: using
the `which` argument in a layout component (if `which=4` was set
as list component of sp.layout, the river would as well be drawn
only in that (last) panel)

```{r}
rv = list("sp.polygons", meuse.riv, fill = "lightblue")
scale = list("SpatialPolygonsRescale", layout.scale.bar(), 
	offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 4)
text1 = list("sp.text", c(180500,329900), "0", cex = .5, which = 4)
text2 = list("sp.text", c(181000,329900), "500 m", cex = .5, which = 4)
arrow = list("SpatialPolygonsRescale", layout.north.arrow(), 
	offset = c(181300,329800), 
	scale = 400, which = 4)
cuts = c(.2,.5,1,2,5,10,20,50,100,200,500,1000,2000)
spplot(meuse, c("cadmium", "copper", "lead", "zinc"), do.log = TRUE,
	key.space = "right", as.table = TRUE,
	sp.layout=list(rv, scale, text1, text2, arrow), # note that rv is up front!
	main = "Heavy metals (top soil), ppm", cex = .7, cuts = cuts)
```

Comparing four kriging varieties in a multi-panel plot with shared scale:

```{r}
rv = list("sp.polygons", meuse.riv, fill = "blue", alpha = 0.1)
pts = list("sp.points", meuse, pch = 3, col = "grey", alpha = .5)
text1 = list("sp.text", c(180500,329900), "0", cex = .5, which = 4)
text2 = list("sp.text", c(181000,329900), "500 m", cex = .5, which = 4)
scale = list("SpatialPolygonsRescale", layout.scale.bar(), 
	offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 4)
library(gstat)
v.ok = variogram(log(zinc)~1, meuse)
ok.model = fit.variogram(v.ok, vgm(1, "Exp", 500, 1))
# plot(v.ok, ok.model, main = "ordinary kriging")
v.uk = variogram(log(zinc)~sqrt(dist), meuse)
uk.model = fit.variogram(v.uk, vgm(1, "Exp", 300, 1))
# plot(v.uk, uk.model, main = "universal kriging")
meuse[["ff"]] = factor(meuse[["ffreq"]])
meuse.grid[["ff"]] = factor(meuse.grid[["ffreq"]])
v.sk = variogram(log(zinc)~ff, meuse)
sk.model = fit.variogram(v.sk, vgm(1, "Exp", 300, 1))
# plot(v.sk, sk.model, main = "stratified kriging")
zn.ok = krige(log(zinc)~1,          meuse, meuse.grid, model = ok.model, debug.level = 0)
zn.uk = krige(log(zinc)~sqrt(dist), meuse, meuse.grid, model = uk.model, debug.level = 0)
zn.sk = krige(log(zinc)~ff,         meuse, meuse.grid, model = sk.model, debug.level = 0)
zn.id = krige(log(zinc)~1,          meuse, meuse.grid, debug.level = 0)

zn = zn.ok
zn[["a"]] = zn.ok[["var1.pred"]]
zn[["b"]] = zn.uk[["var1.pred"]]
zn[["c"]] = zn.sk[["var1.pred"]]
zn[["d"]] = zn.id[["var1.pred"]]
spplot(zn, c("a", "b", "c", "d"), 
	names.attr = c("ordinary kriging", "universal kriging with dist to river", 
		"stratified kriging with flood freq", "inverse distance"), 
	as.table = TRUE, main = "log-zinc interpolation",
	sp.layout = list(rv, scale, text1, text2)
)
```

Reuse these results; universal kriging standard errors; grid plot
with point locations and polygon (river):

```{r}
rv = list("sp.polygons", meuse.riv, fill = "blue", alpha = 0.1)
pts = list("sp.points", meuse, pch = 3, col = "grey", alpha = .7)
spplot(zn.uk, "var1.pred",
	sp.layout = list(rv, scale, text1, text2, pts),
	main = "log(zinc); universal kriging using sqrt(dist to Meuse)")
zn.uk[["se"]] = sqrt(zn.uk[["var1.var"]])
spplot(zn.uk, "se", sp.layout = list(rv, pts),
	main = "log(zinc); universal kriging standard errors")
```

```{r}
arrow = list("SpatialPolygonsRescale", layout.north.arrow(),
    offset = c(-76,34), scale = 0.5, which = 2)
spplot(nc, c("SID74", "SID79"), names.attr = c("1974","1979"),
    colorkey=list(space="bottom"), scales = list(draw = TRUE),
    main = "SIDS (sudden infant death syndrome) in North Carolina",
    sp.layout = list(arrow), as.table = TRUE)
```

```{r}
arrow = list("SpatialPolygonsRescale", layout.north.arrow(), 
	offset = c(-76,34), scale = 0.5, which = 2)
#scale = list("SpatialPolygonsRescale", layout.scale.bar(), 
#	offset = c(-77.5,34), scale = 1, fill=c("transparent","black"), which = 2)
#text1 = list("sp.text", c(-77.5,34.15), "0", which = 2)
#text2 = list("sp.text", c(-76.5,34.15), "1 degree", which = 2)
# create a fake lines data set:
## multi-panel plot with coloured lines: North Carolina SIDS
spplot(nc, c("SID74","SID79"), names.attr = c("1974","1979"),
    colorkey=list(space="bottom"),
    main = "SIDS (sudden infant death syndrome) in North Carolina",
    sp.layout = arrow, as.table = TRUE)
```

Bubble plots for cadmium and zinc:

```{r}
b1 = bubble(meuse, "cadmium", maxsize = 1.5, main = "cadmium concentrations (ppm)",
	key.entries = 2^(-1:4))
b2 = bubble(meuse, "zinc", maxsize = 1.5, main = "zinc concentrations (ppm)",
	key.entries =  100 * 2^(0:4))
print(b1, split = c(1,1,2,1), more = TRUE)
print(b2, split = c(2,1,2,1), more = FALSE)
```

Factor variables using `spplot`:

```{r}
# create two dummy factor variables, with equal labels:
set.seed(31)
nc$f = factor(sample(1:5, 100,replace = TRUE),labels=letters[1:5])
nc$g = factor(sample(1:5, 100,replace = TRUE),labels=letters[1:5])
library(RColorBrewer)
## Two (dummy) factor variables shown with qualitative colour ramp; degrees in axes
spplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE))

```

## maps using ggplot2 

(it is recommended to migrate to `sf`, and use `geom_sf()` for this)

## Interactive maps: leaflet, mapview

R packages leaflet and mapview provide interactive, browser-based
maps building upon the leaflet javascript library. Example with
points, grid and polygons follow:

```{r, results="markup"}
library(mapview)
mapview(meuse, zcol = c("zinc", "lead"), legend = TRUE)
```

```{r, results="markup"}
mapview(meuse.grid, zcol = c("soil", "dist"), legend = TRUE)
```

```{r, results="markup"}
mapview(nc, zcol = c("SID74", "SID79"), alpha.regions = 1.0, legend = TRUE)
```

Mapview also allows grids of view that are synced
```{r, results="markup",eval=FALSE}
m1 <- mapview(meuse, zcol = "soil", burst = TRUE, legend = TRUE)
m2 <- mapview(meuse, zcol = "lead", legend = TRUE)
m3 <- mapview(meuse, zcol = "landuse", map.types = "Esri.WorldImagery", legend = TRUE)
m4 <- mapview(meuse, zcol = "dist.m", legend = TRUE)
sync(m1, m2, m3, m4) # 4 panels synchronised
# latticeView(m1, m2, m3, m4) # 4 panels
```

more examples are found [here](https://environmentalinformatics-marburg.github.io/web-presentations/20150723_mapView.html).

## SessionInfo

```{r}
sessionInfo()
```