File: spsample.Rd

package info (click to toggle)
r-cran-sp 1%3A2.2-0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,856 kB
  • sloc: ansic: 1,091; sh: 14; makefile: 2
file content (160 lines) | stat: -rw-r--r-- 6,540 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
\name{spsample}
\docType{methods}
\alias{spsample-methods}
\alias{spsample,Spatial-method}
\alias{spsample,Line-method}
\alias{spsample,Lines-method}
\alias{spsample,SpatialLines-method}
\alias{spsample,Polygon-method}
\alias{spsample,Polygons-method}
\alias{spsample,SpatialGrid-method}
\alias{spsample,SpatialPixels-method}
\alias{spsample,SpatialPolygons-method}
\alias{spsample}
\alias{makegrid}

\title{ sample point locations in (or on) a spatial object }

\description{ sample point locations within a square area, a grid,
a polygon, or on a spatial line, using regular or random sampling
methods; the methods used assume that the geometry used is not spherical, 
so objects should be in planar coordinates }
\usage{
spsample(x, n, type, ...)
makegrid(x, n = 10000, nsig = 2, cellsize, offset = rep(0.5, nrow(bb)),
	pretty = TRUE)
}
\arguments{
\item{x}{Spatial object; \code{spsample(x,...)} is a generic method for the
existing \code{sample.Xxx} functions}
\item{...}{ optional arguments, passed to the appropriate \code{sample.Xxx}
functions; see NOTES for \code{nclusters} and \code{iter}}
\item{n}{ (approximate) sample size }
\item{type}{ character; \code{"random"} for completely spatial random;
\code{"regular"} for regular (systematically aligned) sampling;
\code{"stratified"} for stratified random (one single random location in
each "cell"); \code{"nonaligned"} for nonaligned systematic sampling
(nx random y coordinates, ny random x coordinates); \code{"hexagonal"}
for sampling on a hexagonal lattice; \code{"clustered"} for clustered sampling;
 \code{"Fibonacci"} for Fibonacci sampling on the sphere (see references).}
\item{bb}{ bounding box of the sampled domain; setting this to a smaller
value leads to sub-region sampling }
\item{offset}{ for square cell-based sampling types (regular, stratified, 
nonaligned, hexagonal): the offset (position) of the regular
grid; the default for \code{spsample} methods is a random location in
the unit cell [0,1] x [0,1], leading to a different grid after
each call; if this is set to \code{c(0.5,0.5)}, the returned grid is
not random (but, in Ripley's wording, "centric systematic"). For
line objects, a single offset value is taken, where the value varies within 
the [0, 1] interval, and 0 is the beginning of each Line object, and 1 
its end }
\item{cellsize}{ if missing, a cell size is derived from the sample size
\code{n}; otherwise, this cell size is used for all sampling methods
except \code{"random"} }
\item{nsig}{ for "pretty" cell size; \code{spsample} does not result in
  pretty grids }
\item{pretty}{logical; if \code{TRUE}, choose pretty (rounded) coordinates}
}

\value{ an object of class \link{SpatialPoints-class}. The number of
points is only guaranteed to equal \code{n} when sampling is done in a
square box, i.e. (\code{sample.Spatial}). Otherwise, the obtained number
of points will have expected value \code{n}. 

When \code{x} is of a class deriving from \link{Spatial-class} for which
no \link{spsample-methods} exists, sampling is done in the bounding box
of the object, using \code{spsample.Spatial}. An overlay using
\link{over} may be necessary to select the features inside the geometry
afterwards. 

Sampling type \code{"nonaligned"} is not implemented for line objects. 

Some methods may return NULL if no points could be successfully placed. 

\code{makegrid} makes a regular grid that covers \code{x}; when
\code{cellsize} is not given it derives one from the number of grid
points requested (approximating the number of cells). It tries to
choose pretty cell size and grid coordinates.

}

\section{Methods}{
\describe{
\item{x = "Spatial"}{ sample in the bbox of \code{x} }
\item{x = "Line"}{ sample on a line }
\item{x = "Polygon"}{ sample in a Polygon }
\item{x = "Polygons"}{ sample in a Polygons object, consisting of possibly
multiple Polygon objects (holes must be correctly defined, use \code{checkPolygonsHoles} if need be) }
\item{x = "SpatialPolygons"}{ sample in an SpatialPolygons object; sampling
takes place over all Polygons objects present, use subsetting to vary
sampling intensity (density); holes must be correctly defined, use \code{checkPolygonsHoles} if need be }
\item{x = "SpatialGrid"}{ sample in an SpatialGrid object }
\item{x = "SpatialPixels"}{ sample in an SpatialPixels object }
}}

\note{If an \link{Polygon-class} object has zero area (i.e. is a line),
samples on this line element are returned. If the area is very close
to zero, the algorithm taken here (generating points in a square
area, selecting those inside the polygon) may be very resource
intensive. When numbers of points per polygon are small and
type="random", the number searched for is inflated to ensure hits,
and the points returned sampled among these.

The following two arguments can be further specified:

\code{nclusters} Number of clusters (strata) to sample from.

\code{iter}(default = 4) number of times to try to place sample points
  in a polygon before giving up and returning NULL - this may occur when
  trying to hit a small and awkwardly shaped polygon in a large bounding
  box with a small number of points

}

\references{Chapter 3 in B.D. Ripley, 1981. Spatial Statistics, Wiley

Fibonacci sampling:  Alvaro Gonzalez, 2010. Measurement of Areas on a
Sphere Using Fibonacci and Latitude-Longitude Lattices. Mathematical
Geosciences 42(1), p. 49-64 }

\author{Edzer Pebesma, \email{edzer.pebesma@uni-muenster.de}}

\seealso{\link{over}, \link{point.in.polygon}, \link{sample}}
\examples{

data(meuse.riv)
meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)), "x")))

plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "regular"), pch = 3)

plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "random"), pch = 3)

plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "stratified"), pch = 3)

plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "nonaligned"), pch = 3)

plot(meuse.sr)
points(spsample(meuse.sr@polygons[[1]], n = 100, "stratified"), pch = 3, cex=.5)

data(meuse.grid)
gridded(meuse.grid) = ~x+y
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="random"), pch=3, cex=.5)
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="stratified"), pch=3, cex=.5)
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="regular"), pch=3, cex=.5)
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="nonaligned"), pch=3, cex=.5)

fullgrid(meuse.grid) = TRUE
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="stratified"), pch=3,cex=.5)

}
\keyword{manip}
\keyword{methods}