1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
\name{spsample}
\docType{methods}
\alias{spsample-methods}
\alias{spsample,Spatial-method}
\alias{spsample,Line-method}
\alias{spsample,Lines-method}
\alias{spsample,SpatialLines-method}
\alias{spsample,Polygon-method}
\alias{spsample,Polygons-method}
\alias{spsample,SpatialGrid-method}
\alias{spsample,SpatialPixels-method}
\alias{spsample,SpatialPolygons-method}
\alias{spsample}
\alias{makegrid}
\title{ sample point locations in (or on) a spatial object }
\description{ sample point locations within a square area, a grid,
a polygon, or on a spatial line, using regular or random sampling
methods; the methods used assume that the geometry used is not spherical,
so objects should be in planar coordinates }
\usage{
spsample(x, n, type, ...)
makegrid(x, n = 10000, nsig = 2, cellsize, offset = rep(0.5, nrow(bb)),
pretty = TRUE)
}
\arguments{
\item{x}{Spatial object; \code{spsample(x,...)} is a generic method for the
existing \code{sample.Xxx} functions}
\item{...}{ optional arguments, passed to the appropriate \code{sample.Xxx}
functions; see NOTES for \code{nclusters} and \code{iter}}
\item{n}{ (approximate) sample size }
\item{type}{ character; \code{"random"} for completely spatial random;
\code{"regular"} for regular (systematically aligned) sampling;
\code{"stratified"} for stratified random (one single random location in
each "cell"); \code{"nonaligned"} for nonaligned systematic sampling
(nx random y coordinates, ny random x coordinates); \code{"hexagonal"}
for sampling on a hexagonal lattice; \code{"clustered"} for clustered sampling;
\code{"Fibonacci"} for Fibonacci sampling on the sphere (see references).}
\item{bb}{ bounding box of the sampled domain; setting this to a smaller
value leads to sub-region sampling }
\item{offset}{ for square cell-based sampling types (regular, stratified,
nonaligned, hexagonal): the offset (position) of the regular
grid; the default for \code{spsample} methods is a random location in
the unit cell [0,1] x [0,1], leading to a different grid after
each call; if this is set to \code{c(0.5,0.5)}, the returned grid is
not random (but, in Ripley's wording, "centric systematic"). For
line objects, a single offset value is taken, where the value varies within
the [0, 1] interval, and 0 is the beginning of each Line object, and 1
its end }
\item{cellsize}{ if missing, a cell size is derived from the sample size
\code{n}; otherwise, this cell size is used for all sampling methods
except \code{"random"} }
\item{nsig}{ for "pretty" cell size; \code{spsample} does not result in
pretty grids }
\item{pretty}{logical; if \code{TRUE}, choose pretty (rounded) coordinates}
}
\value{ an object of class \link{SpatialPoints-class}. The number of
points is only guaranteed to equal \code{n} when sampling is done in a
square box, i.e. (\code{sample.Spatial}). Otherwise, the obtained number
of points will have expected value \code{n}.
When \code{x} is of a class deriving from \link{Spatial-class} for which
no \link{spsample-methods} exists, sampling is done in the bounding box
of the object, using \code{spsample.Spatial}. An overlay using
\link{over} may be necessary to select the features inside the geometry
afterwards.
Sampling type \code{"nonaligned"} is not implemented for line objects.
Some methods may return NULL if no points could be successfully placed.
\code{makegrid} makes a regular grid that covers \code{x}; when
\code{cellsize} is not given it derives one from the number of grid
points requested (approximating the number of cells). It tries to
choose pretty cell size and grid coordinates.
}
\section{Methods}{
\describe{
\item{x = "Spatial"}{ sample in the bbox of \code{x} }
\item{x = "Line"}{ sample on a line }
\item{x = "Polygon"}{ sample in a Polygon }
\item{x = "Polygons"}{ sample in a Polygons object, consisting of possibly
multiple Polygon objects (holes must be correctly defined, use \code{checkPolygonsHoles} if need be) }
\item{x = "SpatialPolygons"}{ sample in an SpatialPolygons object; sampling
takes place over all Polygons objects present, use subsetting to vary
sampling intensity (density); holes must be correctly defined, use \code{checkPolygonsHoles} if need be }
\item{x = "SpatialGrid"}{ sample in an SpatialGrid object }
\item{x = "SpatialPixels"}{ sample in an SpatialPixels object }
}}
\note{If an \link{Polygon-class} object has zero area (i.e. is a line),
samples on this line element are returned. If the area is very close
to zero, the algorithm taken here (generating points in a square
area, selecting those inside the polygon) may be very resource
intensive. When numbers of points per polygon are small and
type="random", the number searched for is inflated to ensure hits,
and the points returned sampled among these.
The following two arguments can be further specified:
\code{nclusters} Number of clusters (strata) to sample from.
\code{iter}(default = 4) number of times to try to place sample points
in a polygon before giving up and returning NULL - this may occur when
trying to hit a small and awkwardly shaped polygon in a large bounding
box with a small number of points
}
\references{Chapter 3 in B.D. Ripley, 1981. Spatial Statistics, Wiley
Fibonacci sampling: Alvaro Gonzalez, 2010. Measurement of Areas on a
Sphere Using Fibonacci and Latitude-Longitude Lattices. Mathematical
Geosciences 42(1), p. 49-64 }
\author{Edzer Pebesma, \email{edzer.pebesma@uni-muenster.de}}
\seealso{\link{over}, \link{point.in.polygon}, \link{sample}}
\examples{
data(meuse.riv)
meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)), "x")))
plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "regular"), pch = 3)
plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "random"), pch = 3)
plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "stratified"), pch = 3)
plot(meuse.sr)
points(spsample(meuse.sr, n = 1000, "nonaligned"), pch = 3)
plot(meuse.sr)
points(spsample(meuse.sr@polygons[[1]], n = 100, "stratified"), pch = 3, cex=.5)
data(meuse.grid)
gridded(meuse.grid) = ~x+y
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="random"), pch=3, cex=.5)
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="stratified"), pch=3, cex=.5)
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="regular"), pch=3, cex=.5)
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="nonaligned"), pch=3, cex=.5)
fullgrid(meuse.grid) = TRUE
image(meuse.grid)
points(spsample(meuse.grid,n=1000,type="stratified"), pch=3,cex=.5)
}
\keyword{manip}
\keyword{methods}
|