File: csdacm.Rnw

package info (click to toggle)
r-cran-sp 1%3A1.4-5-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,328 kB
  • sloc: ansic: 1,108; sh: 14; makefile: 2
file content (1222 lines) | stat: -rw-r--r-- 40,303 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
%% $Id: csdacm.Rnw,v 1.44 2008-04-06 20:47:04 roger Exp $
% -*- mode: noweb; noweb-default-code-mode: R-mode; -*-

% merge all depth coefficients!!

% Customising spatial data analysis classes and methods

%\SweaveOpts{echo=TRUE}
%*Intro and plan*

%motivate spatial data handling
\documentclass{article}
% \VignetteIndexEntry{Customising spatial data classes and methods}

\usepackage{graphicx}
\usepackage[colorlinks=true,urlcolor=blue]{hyperref}

\usepackage{color}

\usepackage{Sweave}
\SweaveOpts{keep.source=FALSE}
\usepackage{natbib}

\newcommand{\strong}[1]{{\normalfont\fontseries{b}\selectfont #1}}
\let\pkg=\strong

\newcommand\code{\bgroup\@codex}
\def\@codex#1{\small {\normalfont\ttfamily\hyphenchar\font=45 #1}\egroup}

\usepackage{xspace}
\def\RR{\textsf{R}\xspace}
\def\SP{\texttt{S-PLUS}\texttrademark\xspace}
\def\SS{\texttt{S}\xspace}
\def\SIII{\texttt{S3}\xspace}
\def\SIV{\texttt{S4}\xspace}

\title{{\bf Customising spatial data classes and methods}\footnote{This vignette formed pp. 127--148 of the first edition of Bivand, R. S.,
Pebesma, E. and G\'{o}mez-Rubio V. (2008) Applied Spatial Data Analysis with R,
Springer-Verlag, New York. It was retired from the second edition (2013) to
accommodate material on other topics, and is made available in this form
with the understanding of the publishers. It has been updated to the 2013
state of the software, e.g. using \code{over}.} }
\author{Edzer Pebesma\footnote{Institute for Geoinformatics,
University of Muenster, Weseler Strasse 253, 48151 M\"{u}nster, Germany.
{\tt edzer.pebesma@uni-muenster.de}}}
\date{Feb 2008}

\begin{document}

\maketitle
\tableofcontents

<<echo=FALSE>>= 
owidth <- getOption("width")
options("width"=90)
.PngNo <- 0
@

<<label=figreset,echo=FALSE,eval=FALSE>>= 
.iwidth <- 5
.iheight <- 6
.ipointsize <- 12
@

<<echo=FALSE,results=hide>>= 
<<figreset>>
@
<<label=afig,echo=FALSE,eval=FALSE>>= 
.PngNo <- .PngNo + 1; file <- paste("Fig-bitmap-", .PngNo, ".pdf", sep="")
pdf(file=file, width = .iwidth, height = .iheight, pointsize = .ipointsize)
opar <- par(mar=c(3,3,1,1)+0.1)
@

<<label=zfig,echo=FALSE,eval=FALSE>>= 
dev.null <- dev.off()
cat("\\includegraphics[width=0.95\\textwidth]{", file, "}\n\n", sep="")
@

Although the classes defined in the \pkg{sp} package cover many needs,
they do not go far beyond the most typical GIS data models. In applied
research, it often happens that customised classes would suit the
actual data coming from the instruments better. Since \SIV classes have
mechanisms for inheritance, it may be attractive to build on the \pkg{sp}
classes, so as to utilise their methods where appropriate. Here, we will
demonstrate a range of different settings in which \pkg{sp} classes can
be extended. Naturally, this is only useful for researchers with specific
and clear needs, so our goal is to show how (relatively) easy it may be
to prototype classes extending \pkg{sp} classes for specific purposes.

\section{Programming with classes and methods}
\label{sect:cls}

This section will explain the elementary basics of programming with
classes and methods in \RR. The \SS language (implemented in \RR and
\SP) contains two mechanisms for creating classes and methods: the
traditional \SIII system and the more recent \SIV system (see Section 2.2 in
\cite{bivand}, in which classes were described for the use{\RR} ---
here they are described for the develope{\RR}).  This chapter is not a
full introduction to \RR programming \citep[see][for more details]{braun+murdoch:07}, but it will try to give some
feel of how the \code{Spatial} classes in package \pkg{sp} can be
extended to be used for wider classes of problems.  For full details,
the interested reader is referred to e.g.\ \cite{R:Venables+Ripley:2000}
and \cite{R:Chambers:1998}, the latter being a reference for new-style
\SIV classes and methods. Example code is for example found in the source
code for package \pkg{sp}, available from CRAN.

Suppose we define myfun as
\begin{footnotesize}
<< >>=
myfun <- function(x) {
	x + 2
}
@
\end{footnotesize}
then, calling it with the numbers 1, 2 and 3 results in
\begin{footnotesize}
<< >>= 
myfun(1:3)
@
\end{footnotesize}
or alternatively using a named argument:
\begin{footnotesize}
<< >>= 
myfun(x=1:3)
@
\end{footnotesize}
The return value of the function is the last expression evaluated.
Often, we want to wrap existing functions, such as a plot function:
\begin{footnotesize}
<< >>=
plotXplus2Yminus3 <- function(x, y, ...) {
	plot(x = x + 2, y = y - 3, ...)
}
@
\end{footnotesize}
In this case, the \code{...} is used to pass information to the
\code{plot} function without explicitly anticipating what it will be:
named arguments \code{x} and \code{y}, or the first two arguments if they
are unnamed are processed, remaining arguments are passed on. 
The plot function is a generic method, with
an instance that depends on the class of its first (\SIII) or first $n$
arguments (\SIV). The available instances of \code{plot} are shown for
\SIII-type methods by

\begin{footnotesize}
<< >>=
methods("plot")
@
\end{footnotesize}
and for \SIV-type methods by
\begin{footnotesize}
<< >>=
library(sp)
showMethods("plot")
@
\end{footnotesize}
where we first loaded \pkg{sp} to make sure there are some \SIV plot
methods to show.

\subsection{\SIII-style classes and methods}

Building \SIII-style classes is simple. Suppose we want to 
build an object of class \code{foo}:
\begin{footnotesize}
<< >>=
x <- rnorm(10)
class(x) <- "foo"
x
@
\end{footnotesize}
If we plot this object, e.g., by \code{plot(x)} we get the same plot as
when we would not have set the class to \code{foo}. If we know, however, that
objects of class \code{foo} need to be plotted without symbols but with
connected lines, we can write a plot method for this class:

\begin{footnotesize}
<< >>=
plot.foo <- function(x, y, ...) {
	plot.default(x, type = 'l', ...)
}
@
\end{footnotesize}
after which \code{plot(x)} will call this particular method, rather than
a default plot method. 

Class inheritance is obtained in \SIII when an object is given multiple 
classes, as in
\begin{footnotesize}
<< >>=
class(x) <- c("foo", "bar")
@
<<eval=FALSE>>= 
plot(x)
@
\end{footnotesize}

For this plot, first function \code{plot.foo} will be looked for, and
if not found the second option \code{plot.bar} will be looked for. If
none of them is found, the default \code{plot.default} will be used.

The \SIII class mechanism is simple and powerful. Much of \RR works with
it, including key functions such as \code{lm}. 
\begin{footnotesize}
<< >>=
data(meuse)
class(meuse)
class(lm(log(zinc)~sqrt(dist), meuse))
@
\end{footnotesize}

There is, however, no checking that a class with a particular name does
indeed contain the elements that a certain method for it expects.
It also has design flaws, as method specification by dot separation
is ambiguous in case of names such as \code{as.data.frame}, where one
cannot tell whether it means that the method \code{as.data} acts on
objects of class \code{frame}, or the method \code{as} acts on objects
of class \code{data.frame}, or none of them (the answer is: none). For
such reasons, \SIV-style classes and methods were designed.

\subsection{\SIV-style classes and methods}

\SIV-style classes are formally defined, using \code{setClass}. As an example,
somewhat simplified versions of classes \code{CRS} and \code{Spatial} 
in \pkg{sp} are
\begin{footnotesize}
<<echo=FALSE>>=
options("width"=60)
@
<<eval=FALSE>>=
setClass("CRS", representation(projargs = "character"))
setClass("Spatial",
    representation(bbox = "matrix", proj4string = "CRS"),
# NOT TOO WIDE
    validity <- function(object) {
        bb <- bbox(object)
        if (!is.matrix(bb))
            return("bbox should be a matrix")
        n <- dimensions(object)
        if (n < 2)
            return("spatial.dimension should be 2 or more")
        if (any(is.na(bb)))
            return("bbox should never contain NA values")
        if (any(!is.finite(bb)))
            return("bbox should never contain infinite values")
        if (any(bb[,"max"] < bb[,"min"]))
            return("invalid bbox: max < min")
		TRUE
	}
)
@
<<echo=FALSE>>=
options("width"=70)
@
\end{footnotesize}

The command \code{setClass} defines a class name as a formal class, gives
the names of the class elements (called slots), and their type---type 
checking will happen upon construction of an instance of the class. Further
checking, e.g., on valid dimensions and data ranges can be done in the
\code{validity} function. Here, the validity function retrieves the
bounding box using the generic \code{bbox} method. 
Generics, if not defined in the base R system, e.g.,
\begin{footnotesize}
<< >>=
isGeneric("show")
@
\end{footnotesize}
can be defined with \code{setGeneric}. Defining a specific instance of a
generic is done by \code{setMethod}:
\begin{footnotesize}
<<eval=FALSE>>=
setGeneric("bbox", function(obj) standardGeneric("bbox"))
setMethod("bbox", signature = "Spatial", function(obj) obj@bbox)
@
\end{footnotesize}
where the signature tells the class of the first (or first $n$) arguments.
Here, the \code{@} operator is used to access the \code{bbox} slot in
an \SIV object, not to be confused with the \code{\$} operator to access
list elements.

We will now illustrate this mechanism by providing a few examples of
classes, building on those available in package \pkg{sp}.

\section{Animal track data in package \pkg{trip}}

CRAN Package \pkg{trip}, written by Michael Sumner
\citep{kirkwood06,page06}, provides a class for animal tracking
data. Animal tracking data consist of sets of ($x,y,t$) stamps,
grouped by an identifier pointing to an individual animal, sensor or
perhaps isolated period of monitoring. A strategy for this
(slightly simplified from that of \pkg{trip}) is to extend the {\tt
SpatialPointsDataFrame} class by a length 2 character vector carrying
the names of the time column and the trip identifier column in the {\tt
SpatialPointsDataFrame} attribute table.

Package \pkg{trip} does a lot of work to read and analyse tracking
data from data formats typical for tracking data (Argos DAT), removing
duplicate observations and validating the objects, e.g., checking that
time stamps increase and movement speeds are realistic. We ignore this
and stick to the bare bones.

We now define a class called \code{trip} that extends \code{SpatialPointsDataFrame}:
\begin{footnotesize}
<< >>=
library(sp)
setClass("trip", representation("SpatialPointsDataFrame", TOR.columns = "character"),
    validity <- function(object) {
        if (length(object@TOR.columns) != 2)
            stop("Time/id column names must be of length 2")
		if (!all(object@TOR.columns %in% names(object@data)))
			stop("Time/id columns must be present in attribute table")
        TRUE
    }
)
showClass("trip")
@
\end{footnotesize}
that checks, upon creation of objects, that indeed two variable names
are passed and that these names refer to variables present in the
attribute table.


\subsection{Generic and constructor functions}
It would be nice to have a constructor function, just like \code{data.frame} or
\code{SpatialPoints}, so we now create it and set it as the generic function to 
be called in case the first argument is of class \code{SpatialPointsDataFrame}.
\begin{footnotesize}
<< >>= 
trip.default <- function(obj, TORnames) {
    if (!is(obj, "SpatialPointsDataFrame"))
        stop("trip only supports SpatialPointsDataFrame") 
	if (is.numeric(TORnames))
		TORnames <- names(obj)[TORnames]
    new("trip", obj, TOR.columns = TORnames)
}

if (!isGeneric("trip"))
    setGeneric("trip", function(obj, TORnames)
        standardGeneric("trip"))

setMethod("trip", signature(obj = "SpatialPointsDataFrame", TORnames = "ANY"), trip.default)
@
\end{footnotesize}

We can now try it out, with turtle data:

\begin{footnotesize}
<< >>= 
turtle <- read.csv(system.file("external/seamap105_mod.csv", package="sp"))
@
<< >>= 
timestamp <- as.POSIXlt(strptime(as.character(turtle$obs_date), "%m/%d/%Y %H:%M:%S"), "GMT")
turtle <- data.frame(turtle, timestamp = timestamp)
turtle$lon <- ifelse(turtle$lon < 0, turtle$lon+360, turtle$lon)
turtle <- turtle[order(turtle$timestamp),]
coordinates(turtle) <- c("lon", "lat")
proj4string(turtle) <- CRS("+proj=longlat +ellps=WGS84")
turtle$id <- c(rep(1, 200), rep(2, nrow(coordinates(turtle)) - 200))
turtle_trip <- trip(turtle, c("timestamp", "id"))
summary(turtle_trip)
@
\end{footnotesize}

\subsection{Methods for trip objects}

The summary method here is not defined for \code{trip}, but is the
default summary inherited from class \code{Spatial}. As can be seen,
nothing special about the trip features is mentioned, such as what the
time points are and what the identifiers. We could alter this by writing a
class-specific summary method
\begin{footnotesize}
<< >>=
summary.trip <- function(object, ...) {
	cat("Object of class \"trip\"\nTime column: ")
	print(object@TOR.columns[1])
	cat("Identifier column: ")
	print(object@TOR.columns[2])
	print(summary(as(object, "Spatial")))
	print(summary(object@data))
}
setMethod("summary", "trip", summary.trip)
summary(turtle_trip)
@
\end{footnotesize}

As \code{trip} extends \code{SpatialPointsDataFrame}, 
subsetting using {\small \verb+"["+}
and column selection or replacement using {\small \verb+"[["+}
or {\small \verb+"$"+} all work, 
as these are inherited. Creating invalid trip objects can be prohibited by
adding checks to the validity function in the class definition, e.g.,
%<<eval=FALSE,echo=TRUE>>=
%x <- turtle_trip[1]
%@
will not work because the time and/or id column are not present any more.

A custom plot method for trip could be written, for example 
using colour to denote a change in identifier:
\begin{footnotesize}
<< >>= 
setGeneric("lines", function(x, ...) standardGeneric("lines"))
setMethod("lines", signature(x = "trip"),
    function(x, ..., col = NULL) {
# NOT TOO WIDE
	tor <- x@TOR.columns
	if (is.null(col)) {
	  l <- length(unique(x[[tor[2]]]))
          col <- hsv(seq(0, 0.5, length = l))
	}
        coords <- coordinates(x)
        lx <- split(1:nrow(coords), x[[tor[2]]])
        for (i in 1:length(lx))
        	lines(coords[lx[[i]], ], col = col[i], ...)
    }
)
@
\end{footnotesize}
Here, the \code{col} argument is added to the function header so that a
reasonable default can be overridden, e.g., for black/white plotting.

\section{Multi-point data: \texttt{SpatialMultiPoints}}

One of the feature types of the OpenGeospatial Consortium (OGC) simple feature 
specification that has
not been implemented in \pkg{sp} is the \code{MultiPoint} object.  In a
\code{MultiPoint} object, each feature refers to a {\em set of} points. The
\pkg{sp} classes \code{SpatialPointsDataFrame} only provide reference to a
single point. Instead of building a new class up from scratch, we'll try
to re-use code and build a class \code{SpatialMultiPoint} from the {\tt
SpatialLines} class. After all, lines are just sets of ordered points.

In fact, the \code{SpatialLines} class implements the \code{MultiLineString}
simple feature, where each feature can refer to multiple lines. A special
case is formed if each feature only has a single line:
\begin{footnotesize}
<<echo=FALSE>>= 
options("width"=50)
@
<< >>= 
setClass("SpatialMultiPoints", representation("SpatialLines"), 
	validity <- function(object) {
		if (any(unlist(lapply(object@lines, function(x) length(x@Lines))) != 1))
# NOT TOO WIDE
			stop("Only Lines objects with one Line element")
		TRUE
	}
)
SpatialMultiPoints <- function(object) new("SpatialMultiPoints", object)
@
<<echo=FALSE>>= 
options("width"=70)
@
\end{footnotesize}

As an example, we can create an instance of this class for two MultiPoint 
features each having three locations:
\begin{footnotesize}
<< >>=
n <- 5
set.seed(1)
x1 <- cbind(rnorm(n),rnorm(n, 0, 0.25))
x2 <- cbind(rnorm(n),rnorm(n, 0, 0.25))
x3 <- cbind(rnorm(n),rnorm(n, 0, 0.25))
L1 <- Lines(list(Line(x1)), ID="mp1")
L2 <- Lines(list(Line(x2)), ID="mp2")
L3 <- Lines(list(Line(x3)), ID="mp3")
s <- SpatialLines(list(L1,L2,L3))
smp <- SpatialMultiPoints(s)
@
\end{footnotesize}

If we now plot object \code{smp}, we get the same plot as when we plot
\code{s}, showing the two lines. The \code{plot} method for a
\code{SpatialLines} object is not suitable, so we write a new one:

\begin{footnotesize}
<< >>=
plot.SpatialMultiPoints <- function(x, ..., pch = 1:length(x@lines), col = 1, cex = 1) {
	n <- length(x@lines)
	if (length(pch) < n)
		pch <- rep(pch, length.out = n)
	if (length(col) < n)
		col <- rep(col, length.out = n)
	if (length(cex) < n)
		cex <- rep(cex, length.out = n)
	plot(as(x, "Spatial"),  ...)
	for (i in 1:n)
		points(x@lines[[i]]@Lines[[1]]@coords, pch = pch[i], col = col[i], cex = cex[i])
}
setMethod("plot", signature(x = "SpatialMultiPoints", y = "missing"),
    function(x, y, ...) plot.SpatialMultiPoints(x, ...))
@
\end{footnotesize}

Here we chose to pass any named \code{...} arguments to the plot method
for a \code{Spatial} object. This function sets up the axes and controls the
margins, aspect ratio, etc. All arguments that need to be passed
to \code{points} (\code{pch} for symbol type, \code{cex} for symbol size and
\code{col} for symbol colour) need explicit naming and sensible defaults,
as they are passed explicitly to the consecutive calls to \code{points}.
According to the documentation of \code{points}, in addition to \code{pch},
\code{cex} and \code{col}, the arguments \code{bg} and \code{lwd} (symbol
fill colour and symbol line width) would need a similar treatment to
make this plot method completely transparent with the base \code{plot}
method---something an end user would hope for.

Having \code{pch}, \code{cex} and \code{col} arrays the length of the number
of \code{MultiPoints} {\em sets} rather than the number of points to be
plotted is useful for two reasons. First, the whole point of {\tt
MultiPoints} object is to distinguish {\em sets} of points. Second,
when we extend this class to \code{SpatialMultiPointsDataFrame}, e.g., by
\begin{footnotesize}
<< >>= 
cName <- "SpatialMultiPointsDataFrame"
setClass(cName, representation("SpatialLinesDataFrame"), 
	validity <- function(object) {
                lst <- lapply(object@lines, function(x) length(x@Lines))
		if (any(unlist(lst) != 1))
			stop("Only Lines objects with single Line")
		TRUE
	}
)
SpatialMultiPointsDataFrame <- function(object) {
   new("SpatialMultiPointsDataFrame", object)
}
@
\end{footnotesize}
then we can pass symbol characteristics by (functions of) columns in the attribute table:

\begin{footnotesize}
<<fig=FALSE>>=
df <- data.frame(x1 = 1:3, x2 = c(1,4,2), row.names = c("mp1", "mp2", "mp3"))
smp_df <- SpatialMultiPointsDataFrame(SpatialLinesDataFrame(smp, df))
setMethod("plot", signature(x = "SpatialMultiPointsDataFrame", y = "missing"),
    function(x, y, ...) plot.SpatialMultiPoints(x, ...))
grys <- c("grey10", "grey40", "grey80")
@
<<eval=FALSE>>= 
plot(smp_df, col = grys[smp_df[["x1"]]], pch = smp_df[["x2"]], cex = 2, axes = TRUE) 
@
\end{footnotesize}
for which the plot is shown in Figure \ref{fig:smpdf}.

\begin{figure}
%<<fig=TRUE,echo=FALSE>>=
<<echo=FALSE,results=tex>>= 
.iwidth <- 6
.iheight <- 2.5
.ipointsize <- 10
<<afig>>
plot(smp_df, col = grys[smp_df[["x1"]]], pch = smp_df[["x2"]], cex = 2, axes = TRUE) 
<<zfig>>
<<figreset>>
@
\caption{Plot of the \code{SpatialMultiPointsDataFrame} object.}
\label{fig:smpdf}
\end{figure}

Hexagonal grids are like square grids, where grid points are centres
of matching hexagons, rather than squares. Package \pkg{sp} has no
classes for hexagonal grids, but does have some useful functions for
generating and plotting them. This could be used to build a class. Much
of this code in \pkg{sp} is based on postings to the R-sig-geo mailing
list by Tim Keitt, used with permission.

The spatial sampling method \code{spsample} has a method for sampling points
on a hexagonal grid:
\begin{footnotesize}
<<>>= 
data(meuse.grid)
gridded(meuse.grid)=~x+y
xx <- spsample(meuse.grid,  type="hexagonal", cellsize=200)
class(xx)
@
\end{footnotesize}
gives the points shown in the left side of Figure \ref{fig:hex}. Note
that an alternative hexagonal representation is obtained by rotating
this grid 90 degrees; we will not further consider that here.

\begin{footnotesize}
<<fig=FALSE>>=
HexPts <- spsample(meuse.grid,  type="hexagonal", cellsize=200)
@
<<eval=FALSE>>= 
spplot(meuse.grid["dist"], sp.layout = list("sp.points", HexPts, col = 1))
@
<<fig=FALSE>>= 
HexPols <- HexPoints2SpatialPolygons(HexPts)
df <- over(HexPols, meuse.grid)
HexPolsDf <- SpatialPolygonsDataFrame(HexPols, df, match.ID = FALSE)
@
<<eval=FALSE>>= 
spplot(HexPolsDf["dist"])
@
\end{footnotesize}
for which the plots are shown in Figure \ref{fig:hex}.

\begin{figure}
<<echo=FALSE,results=tex>>= 
.iwidth <- 6
.iheight <- 4
<<afig>>
library(lattice)
# RSB quietening greys
grys <- grey.colors(11, 0.95, 0.55, 2.2)
print(spplot(meuse.grid["dist"], cuts=10, col.regions=grys, sp.layout = list("sp.points", HexPts, col = 1)),
	split = c(1, 1, 2, 1), more = TRUE)
print(spplot(HexPolsDf["dist"], cuts=10, col.regions=grys),
	split = c(2, 1, 2, 1), more = FALSE)
<<zfig>>
<<figreset>>
@
\caption{Hexagonal points (left) and polygons (right).}
\label{fig:hex}
\end{figure}
We can now generate and plot hexagonal grids, but need to deal with two
representations: as points and as polygons, and both representations do
not tell by themselves that they represent a hexagonal grid. 

For designing a hexagonal grid class we will extend \code{SpatialPoints},
assuming that computation of the polygons can be done when needed without 
a prohibitive overhead.
\begin{footnotesize}
<< >>=
setClass("SpatialHexGrid", representation("SpatialPoints", dx = "numeric"),
	validity <- function(object) {
		if (object@dx <= 0)
			stop("dx should be positive")
		TRUE
	}
)
@
<<echo=FALSE>>= 
options("width"=40)
@
<< >>= 
setClass("SpatialHexGridDataFrame", representation("SpatialPointsDataFrame", dx = "numeric"),
# NOT TOO WIDE
	validity <- function(object) {
		if (object@dx <= 0)
			stop("dx should be positive")
		TRUE
	}
)
@
<<echo=FALSE>>= 
options("width"=70)
@
\end{footnotesize}
Note that these class definitions do not check that instances actually do
form valid hexagonal grids; a more robust implementation could provide
a test that distances between points with equal $y$ coordinate are
separated by a multiple of \code{dx}, that the $y$-separations are
correct and so on.

It might make sense to adapt the generic \code{spsample} method in
package \pkg{sp} to return \code{SpatialHexGrid} objects; we can also
add \code{plot} and \code{spsample} methods for them. Method \code{over}
should work with a \code{SpatialHexGrid} as its first argument, 
by inheriting from \code{SpatialPoints}.  Let us first see
how to create the new classes. Without a constructor function we can use

\begin{footnotesize}
<< >>=
HexPts <- spsample(meuse.grid,  type="hexagonal", cellsize=200)
Hex <- new("SpatialHexGrid", HexPts, dx = 200)
df <- over(Hex, meuse.grid)
spdf <- SpatialPointsDataFrame(HexPts, df)
HexDf <- new("SpatialHexGridDataFrame", spdf, dx = 200)
@
\end{footnotesize}
Because of the route taken to define both HexGrid classes, it is not
obvious that the second extends the first. We can tell the \SIV system
this by \code{setIs}:
\begin{footnotesize}
<< >>=
is(HexDf, "SpatialHexGrid")
setIs("SpatialHexGridDataFrame", "SpatialHexGrid")
is(HexDf, "SpatialHexGrid")
@
\end{footnotesize}
to make sure that methods for \code{SpatialHexGrid} objects work as well
for objects of class \code{SpatialHexGridDataFrame}.

When adding methods, several of them will need conversion to the
polygon representation, so it makes sense to add the conversion
function such that e.g. \code{as(x, "SpatialPolygons")} will work:
\begin{footnotesize}
<<echo=FALSE>>= 
options("width"=50)
@
<< >>=
# NOT TOO WIDE
setAs("SpatialHexGrid", "SpatialPolygons", 
	function(from) 
		HexPoints2SpatialPolygons(from, from@dx)
)
setAs("SpatialHexGridDataFrame", "SpatialPolygonsDataFrame", 
	function(from)
		SpatialPolygonsDataFrame(as(obj, "SpatialPolygons"), obj@data, match.ID = FALSE)
)
@
<<echo=FALSE>>= 
options("width"=70)
@
\end{footnotesize}

We can now add \code{plot}, \code{spplot}, \code{spsample} and
\code{over} methods for these classes:
\begin{footnotesize}
<< >>= 
setMethod("plot", signature(x = "SpatialHexGrid", y = "missing"),
    function(x, y, ...) plot(as(x, "SpatialPolygons"), ...)
)
setMethod("spplot", signature(obj = "SpatialHexGridDataFrame"),
    function(obj, ...)
		spplot(SpatialPolygonsDataFrame( as(obj, "SpatialPolygons"), obj@data, match.ID = FALSE), ...)
)
setMethod("spsample", "SpatialHexGrid", function(x, n, type, ...) 
	spsample(as(x, "SpatialPolygons"), n = n, type = type, ...)
)
setMethod("over", c("SpatialHexGrid", "SpatialPoints"), function(x, y, ...) 
	over(as(x, "SpatialPolygons"), y)
)
@
\end{footnotesize}
After this, the following will work:

\begin{footnotesize}
<<eval=FALSE>>=
spplot(meuse.grid["dist"], sp.layout = list("sp.points", Hex, col = 1))
spplot(HexDf["dist"])
@
\end{footnotesize}

Coercion to a data frame is done by

\begin{footnotesize}
<<eval=FALSE>>=
as(HexDf, "data.frame")
@
\end{footnotesize}

Another detail not mentioned is that the bounding box of the hexgrid 
objects only match the grid centre points, not the hexgrid cells:
\begin{footnotesize}
<< >>= 
bbox(Hex)
bbox(as(Hex, "SpatialPolygons"))
@
\end{footnotesize}
One solution for this is to correct for this in a constructor function,
and check for it in the validity test. Explicit coercion functions
to the points representation would have to set the bounding box back
to the points ranges.  Another solution is to write a bbox method for
the hexgrid classes, taking the risk that someone still looks at the
incorrect bbox slot.

\section{Spatio-temporal grids}
Spatio-temporal data can be represented in different ways. One simple
option is when observations (or model-results, or predictions) are given
on a regular space-time grid.

Objects of class or extending \code{SpatialPoints}, \code{SpatialPixels}
and \code{SpatialGrid} do not have the constraint that they represent a
two-dimensional space; they may have arbitrary dimension; an example for
a three-dimensional grid is

\begin{footnotesize}
<< >>= 
n <- 10
x <- data.frame(expand.grid(x1 = 1:n, x2 = 1:n, x3 = 1:n), z = rnorm(n^3))
coordinates(x) <- ~x1+x2+x3
gridded(x) <- TRUE
fullgrid(x) <- TRUE
summary(x)
@
\end{footnotesize}
We might assume here that the third dimension, \code{x3}, represents
time. If we are happy with time somehow represented by a real number
(in double precision), then we are done. A simple representation is that of
decimal year, with e.g. 1980.5 meaning the 183rd day of 1980, or
e.g. relative time in seconds after the start of some event.

When we want to use the \code{POSIXct} or \code{POSIXlt} representations,
we need to do some more work to see the readable version. We will now
devise a simple three-dimensional space-time grid with the \code{POSIXct}
representation.

\begin{footnotesize}
<<echo=FALSE>>= 
options("width"=50)
@
<< >>= 
# NOT TOO WIDE
setClass("SpatialTimeGrid", "SpatialGrid",
	validity <- function(object) {
		stopifnot(dimensions(object) == 3)
		TRUE
	}
)
@
<<echo=FALSE>>= 
options("width"=70)
@
\end{footnotesize}
Along the same line, we can extend the \code{SpatialGridDataFrame}
for space-time:

\begin{footnotesize}
<< >>=
setClass("SpatialTimeGridDataFrame", "SpatialGridDataFrame",
	validity <- function(object) {
		stopifnot(dimensions(object) == 3)
		TRUE
	}
)
setIs("SpatialTimeGridDataFrame", "SpatialTimeGrid")
x <- new("SpatialTimeGridDataFrame", x)
@
\end{footnotesize}
A crude summary for this class could be written along these lines:
\begin{footnotesize}
<< >>= 
summary.SpatialTimeGridDataFrame <- function(object, ...) {
	cat("Object of class SpatialTimeGridDataFrame\n")
	x <- gridparameters(object)
	t0 <- ISOdate(1970,1,1,0,0,0)
	t1 <- t0 + x[3,1]
	cat(paste("first time step:", t1, "\n"))
	t2 <- t0 + x[3,1] + (x[3,3] - 1) * x[3,2]
	cat(paste("last time step: ", t2, "\n"))
	cat(paste("time step:      ", x[3,2], "\n"))
	summary(as(object, "SpatialGridDataFrame"))
}
@
<<echo=FALSE>>= 
options("width"=50)
@
<< >>= 
# NOT TOO WIDE
setMethod("summary", "SpatialTimeGridDataFrame", summary.SpatialTimeGridDataFrame)
summary(x)
@
<<echo=FALSE>>= 
options("width"=70)
@
\end{footnotesize}

Next, suppose we need a subsetting method that selects on the time. 
When the first subset argument is allowed to be a time range, this is done by
\begin{footnotesize}
<< >>= 
subs.SpatialTimeGridDataFrame <- function(x, i, j, ..., drop=FALSE) {
	t <- coordinates(x)[,3] + ISOdate(1970,1,1,0,0,0)
	if (missing(j))
		j <- TRUE
	sel <- t %in% i
	if (! any(sel))
		stop("selection results in empty set")
	fullgrid(x) <- FALSE
	if (length(i) > 1) {
		x <- x[i = sel, j = j,...]
		fullgrid(x) <- TRUE
		as(x, "SpatialTimeGridDataFrame")
	} else {
		gridded(x) <- FALSE
		x <- x[i = sel, j = j,...]
		cc <- coordinates(x)[,1:2]
		p4s <- CRS(proj4string(x))
# NOT TOO WIDE
		SpatialPixelsDataFrame(cc, x@data, proj4string = p4s)
	}
}
setMethod("[", c("SpatialTimeGridDataFrame", "POSIXct", "ANY"), 
	subs.SpatialTimeGridDataFrame)
t1 <- as.POSIXct("1970-01-01 0:00:03", tz = "GMT")
t2 <- as.POSIXct("1970-01-01 0:00:05", tz = "GMT")
summary(x[c(t1,t2)])
summary(x[t1])
@
\end{footnotesize}
The reason to only convert back to \code{SpatialTimeGridDataFrame} when
multiple time steps are present is that the time step (``cell size''
in time direction) cannot be found when there is only a single step. In
that case, the current selection method returns an object of class
\code{SpatialPixelsDataFrame} for that time slice.


Plotting a set of slices could be done using levelplot, or writing
another \code{spplot} method:
\begin{footnotesize}
<< >>= 
spplot.stgdf <- function(obj, zcol = 1, ..., format = NULL) {
# NOT TOO WIDE
	if (length(zcol) != 1)
		stop("can only plot a single attribute")
	if (is.null(format)) format <- "%Y-%m-%d %H:%M:%S"
	cc <- coordinates(obj)
	df <- unstack(data.frame(obj[[zcol]], cc[,3]))
	ns <- as.character(coordinatevalues(getGridTopology(obj))[[3]] + ISOdate(1970,1,1,0,0,0), format = format)
	cc2d <- cc[cc[,3] == min(cc[,3]), 1:2]
	obj <- SpatialPixelsDataFrame(cc2d, df)
	spplot(obj, names.attr = ns,...)
}
setMethod("spplot", "SpatialTimeGridDataFrame", spplot.stgdf)
@
\end{footnotesize}

\begin{figure}
\begin{center}
<<echo=FALSE,results=tex>>=
.iwidth <- 6
.iheight <- 4
<<afig>>
print(spplot(x, format = "%H:%M:%S", as.table=TRUE))
<<zfig>>
<<figreset>>
@
\end{center}
\caption{ \code{spplot} for an object of class \code{SpatialTimeGridDataFrame},
filled with random numbers.}
\label{fig:stgdf}
\end{figure}
Now, the result of 
\begin{footnotesize}
<<eval=FALSE>>=
library(lattice)
trellis.par.set(canonical.theme(color = FALSE))
spplot(x, format = "%H:%M:%S", as.table=TRUE, cuts=6,
 col.regions=grey.colors(7, 0.55, 0.95, 2.2)) 
# RSB quietening greys
@
\end{footnotesize}
is shown in Figure \ref{fig:stgdf}. The format argument passed controls the
way time is printed; one can refer to the help of
\begin{footnotesize}
<<eval=FALSE>>=
?as.character.POSIXt
@
\end{footnotesize}
for more details about the \code{format} argument.

\section{Analysing spatial Monte Carlo simulations}
\label{sec:simquant}

Quite often, spatial statistical analysis results in a large number
of spatial realisations or a random field, using some Monte Carlo
simulation approach. Regardless whether individual values refer to
points, lines, polygons or grid cells, we would like to write some
methods or functions that aggregate over these simulations, to get
summary statistics such as the mean value, quantiles, or cumulative
distributions values. Such aggregation can take place in two ways.
Either we aggregate over the probability space, and compute summary
statistics for each geographical feature over the set of realisations
(i.e., the rows of the attribute table), or for each realisation we
aggregate over the complete geographical layer or a subset of it (i.e.,
aggregate over the columns of the attribute table).

Let us first generate, as an example, a set of 100 conditional Gaussian
simulations for the zinc variable in the meuse data set:
\begin{footnotesize}
<<eval=TRUE,echo=TRUE>>= 
library(gstat)
data(meuse)
coordinates(meuse) <- ~x+y
v <- vgm(.5, "Sph", 800, .05)
sim <- krige(log(zinc)~1, meuse, meuse.grid, v, nsim=100, nmax=30)
sim@data <- exp(sim@data)
@
\end{footnotesize}

where the last statement back-transforms the simulations from the log scale
to the observation scale. A quantile method for Spatial object attributes
can be written as
\begin{footnotesize}
<< >>= 
quantile.Spatial <- function(x, ..., byLayer = FALSE) {
	stopifnot("data" %in% slotNames(x))
	apply(x@data, ifelse(byLayer, 2, 1), quantile, ...)
}
@
\end{footnotesize}
after which we can find the sample lower and upper 95\% 
confidence limits by
\begin{footnotesize}
<< >>=
sim$lower <- quantile.Spatial(sim[1:100], probs = 0.025)
sim$upper <- quantile.Spatial(sim[1:100], probs = 0.975)
@
\end{footnotesize}

To get the sample distribution of the areal median, we can aggregate over
layers:
\begin{footnotesize}
<< >>=
medians <- quantile.Spatial(sim[1:100], probs = 0.5, byLayer = TRUE)
@
<<eval=FALSE>>=
hist(medians)
@
\end{footnotesize}

It should be noted that in these particular cases, the quantities computed
by simulations could have been obtained faster and exact by working
analytically with ordinary (block) kriging and the normal distribution
(Section 8.7.2 in \cite{bivand}).

A statistic that cannot be obtained analytically is the sample distribution
of the area fraction that exceeds a threshold. Suppose that 500 is a
crucial threshold, and we want to summarise the sampling distribution of 
the area fraction where 500 is exceeded:
\begin{footnotesize}
<<echo=FALSE>>= 
options("width"=50)
@
<< >>=
fractionBelow <- function(x, q, byLayer = FALSE) {
	stopifnot(is(x, "Spatial") || !("data" %in% slotNames(x)))
	apply(x@data < q, ifelse(byLayer, 2, 1), function(r) sum(r)/length(r))
# NOT TOO WIDE
}
@
<<echo=FALSE>>= 
options("width"=70)
@
<< >>=
over500 <- 1 - fractionBelow(sim[1:100], 200, byLayer = TRUE)
summary(over500)
quantile(over500, c(0.025, 0.975))
@
\end{footnotesize}


For space-time data, we could write methods that aggregate over space,
over time or over space and time.

\section{Processing massive grids}

Up to now we have made the assumption that gridded data can be completely read, 
and are kept by \RR in memory. In some cases, however, we need to process grids
that exceed the memory capacity of the computers available.  A method for analysing
grids without fully loading them into memory then seems useful. Note that 
package \pkg{rgdal} allows for partial reading of grids, e.g.,

<<echo=FALSE,results=hide>>=
run <- require(rgdal, quietly=TRUE)
@

\begin{footnotesize}
<<>>=
if (run) {
  fn <- system.file("pictures/erdas_spnad83.tif", package = "rgdal")[1]
}
@
<<eval=FALSE>>=
x <- readGDAL(fn, output.dim = c(120, 132))
x$band1[x$band1 <= 0] <- NA
spplot(x, col.regions=bpy.colors())
@
\end{footnotesize}
reads a downsized grid, where 1\% of the grid cells remained. Another
option is reading certain rectangular sections of a grid, starting at
some offset.

Yet another approach is to use the low-level opening routines and then
subset:

\begin{footnotesize}
<<>>= 
if (run) {
library(rgdal)
x <- GDAL.open(fn)
class(x)
}
if (run) {
x.subs <- x[1:100, 1:100, 1]
class(x.subs)
}
if (run) {
gridparameters(x.subs)
}
@
\end{footnotesize}
An object of class \code{GDALReadOnlyDataset} only contains a file handle.
The subset method {\small \verb+"["+}
for it does not, as it quite often does,
return an object of the same class but actually reads the data requested,
with arguments interpreted as {\em rows}, {\em columns} and raster {\em
bands}, and returns a \code{SpatialGridDataFrame}. We will now extend this
approach to allow partial writing through {\small \verb+"["+}
as well. As the
actual code is rather lengthy and involves a lot of administration,
it will not all be shown and details can be found in the \pkg{rgdal}
source code.


We will define two classes,
\begin{footnotesize}
<<echo=FALSE>>= 
options("width"=50)
@
<<>>=
if (run) {
setClass("SpatialGDAL",
    representation("Spatial", grid = "GridTopology", grod = "GDALReadOnlyDataset", 
# NOT TOO WIDE
		name = "character"))
setClass("SpatialGDALWrite", "SpatialGDAL")
}
@
<<echo=FALSE>>= 
options("width"=70)
@
\end{footnotesize}
that derive from \code{Spatial}, contain a \code{GridTopology}
and a file handle in the \code{grod} slot. Next, we can define a
function \code{open.SpatialGDAL} to open a raster file, returning a
\code{SpatialGDAL} object and a function \code{copy.SpatialGDAL}
that returns a writable copy of the opened raster. Note that some GDAL
drivers only allow copying, some only writing and some both.

\begin{footnotesize}
<<eval=FALSE>>=
x <- open.SpatialGDAL(fn)
nrows <- GDALinfo(fn)["rows"]
ncols <- GDALinfo(fn)["columns"]
xout <- copy.SpatialGDAL(x, "erdas_spnad83_out.tif")
bls <- 20
for (i in 1:(nrows/bls - 1)) {
	r <- 1+(i-1)*bls
	for (j in 1:(ncols/bls - 1)) {
		c <- 1+(j-1)*bls
		x.in <- x[r:(r+bls),c:(c+bls)]
		xout[r:(r+bls),c:(c+bls)] <- x.in$band1 + 10 #$
	}
	cat(paste("row-block", i, "\n"))
}
close(x)
close(xout)
@
\end{footnotesize}
This requires the functions {\small \verb+"["+} 
and {\small \verb+"[<-"+}
to be present. They are set by
\begin{footnotesize}
<<eval=FALSE>>=
setMethod("[", "SpatialGDAL",
    function(x, i, j, ... , drop = FALSE)
        x@grod[i = i, j = j, ...]
)
setReplaceMethod("[", "SpatialGDALWrite", function(x, i, j, ..., value) {
	...
})
@
\end{footnotesize}
where, for the latter, the implementation details are here omitted. It
should be noted that single rows or columns cannot be read this way,
as they cannot be converted sensibly to a grid.


It should be noted that flat binary representations such as the
Arc/Info Binary Grid allow much faster random access than ASCII
representations or compressed formats such as jpeg varieties. Also,
certain drivers in the GDAL library suggest an optimal
block size for partial access (e.g., typically a single row), which is
not used here\footnote{An attempt to use this block size is, at time of 
writing, found in the \code{blockApply} code, found in the THK
branch of the \pkg{rgdal} project on R-forge.}.


This chapter has sketched developments beyond the base \pkg{sp} classes
and methods used otherwise in this book. Although we think that the base
classes cater for many standard kinds of spatial data analysis, it is
clear that specific research problems will call for specific solutions,
and that the \RR environment provides the high-level abstractions needed
to help busy researchers get their work done.


<<echo=FALSE>>= 
options("width"=owidth)
@


\begin{thebibliography}{}

\bibitem[Bivand et al., 2008]{bivand}
Roger S. Bivand, Edzer J. Pebesma and Virgilio Gomez-Rubio (2008).
\newblock {\em Applied spatial data analysis with {\RR}}
\newblock Springer, NY

\bibitem[Braun and Murdoch, 2007]{braun+murdoch:07}
Braun, W.~J. and Murdoch, D.~J. (2007).
\newblock {\em A first course in statistical programming with {\RR}}.
\newblock Cambridge University Press, Cambridge.

\bibitem[Chambers, 1998]{R:Chambers:1998}
Chambers, J.M. (1998).
\newblock {\em Programming with Data}.
\newblock Springer, New York.

\bibitem[Kirkwood et al., 2006]{kirkwood06}
Kirkwood, R., Lynch, M., Gales, N., Dann, P., and Sumner, M. (2006).
\newblock At-sea movements and habitat use of adult male {A}ustralian fur seals
  ({A}rctocephalus pusillus doriferus).
\newblock {\em Canadian Journal of Zoology}, 84:1781--1788.

\bibitem[Page et al., 2006]{page06}
Page, B., McKenzie, J., Sumner, M., Coyne, M., and Goldsworthy, S. (2006).
\newblock Spatial separation of foraging habitats among {N}ew {Z}ealand fur
  seals.
\newblock {\em Marine Ecology Progress Series}, 323:263--279.

\bibitem[Venables and Ripley, 2000]{R:Venables+Ripley:2000}
Venables, W. N. and Ripley, B. D. (2000).
\newblock {\em {\SS} Programming}.
\newblock Springer, New York.

\end{thebibliography}

\end{document}