1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/*
* Copyright (C) Andrew Helmer 2020.
* Licensed under MIT Open-Source License: see LICENSE.
*
* These functions generate PMJ(0,2) sequences from
* "Progressive Multi-Jittered Sample Sequences", Christensen et al. 2018, using
* the algorithm from "Efficient Generation of Points that Satisfy
* Two-Dimensional Elementary Intervals", Matt Pharr, 2019.
*
* Thanks to Matt's paper, the non-best-candidate sampling is quite fast. On my
* 2017 Macbook Pro, 65536 samples takes <50ms, i.e. it generates 1.43 million
* samples/sec, with -O3 compilation. Best candidate sampling is slower at
* ~500,000 samples/sec with 10 candidates. If you want to use the
* Best-Candidate samples in a production raytracer, for example, probably
* better to precompute a bunch of tables and do lookups into them. Also worth
* noting that the pmjbn algorithm (in pmj.cc) has much better blue-noise
* characteristics than pmj02bn.
*/
#ifndef SAMPLE_GENERATION_PMJ02_H_
#define SAMPLE_GENERATION_PMJ02_H_
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <random>
#include <stack>
#include <utility>
#include <vector>
#include "pmj02_util.h"
#include "select_subquad.h"
#include "util.h"
namespace pmj {
namespace {
// Generates progressive multi-jittered (0,2) samples WITHOUT blue noise
// properties. Takes in a number of samples.
std::unique_ptr<Point[]> GetPMJ02Samples(const int num_samples, random_gen& rng);
// Generates progressive multi-jittered (0,2) samples with blue noise
// properties.
std::unique_ptr<Point[]> GetPMJ02SamplesWithBlueNoise(
const int num_samples, random_gen& rng);
/*
* -----------------------------------------------------------------------
* These functions are just for experimentation, but likely not useful for
* real purposes, since they perform worse than the ones above.
* -----------------------------------------------------------------------
*/
using std::vector;
/*
* The SampleSet is a class that contains the generated samples, as well as the
* currently populated strata. It's used to generate new samples within the
* unpopulated strata.
*/
class SampleSet {
public:
explicit SampleSet(const int num_samples,
const int num_candidates,
random_gen& _rng)
: num_candidates_(num_candidates), rng(_rng) {
samples_ = std::unique_ptr<Point[]>(new Point[num_samples]());
std::fill_n(samples_.get(), num_samples, Point({0.0, 0.0}));
int grid_memory_size = 1;
while (grid_memory_size < num_samples)
grid_memory_size <<= 2;
sample_grid_ = std::unique_ptr<const Point*[]>(new const Point*[grid_memory_size]());
std::fill_n(sample_grid_.get(), grid_memory_size, nullptr);
}
void GenerateFirstSample();
// This generates a new sample at the given index, given the X position and Y
// position of the subquadrant. It won't generate a new sample in an existing
// strata.
void GenerateNewSample(const int sample_index,
const int x_pos,
const int y_pos);
// This function should be called after every power of 2 samples. It divides
// the strata up into the next elementary (0,2) intervals, and marks the
// occupied strata..
void SubdivideStrata();
std::unique_ptr<Point[]> ReleaseSamples() {
return std::move(samples_);
}
const Point& sample(const int sample_index) const {
return samples_[sample_index];
}
const Point* samples() const {
return samples_.get();
}
const int dim() const { return dim_; }
private:
// Adds a new point at index i. Updates the necessary data structures.
void AddSample(const int i, const Point& sample);
// Given a sample, sets all the correct strata to true.
void UpdateStrata(const int sample_index);
Point GetCandidateSample(const vector<int>& valid_x_strata,
const vector<int>& valid_y_strata);
std::unique_ptr<Point[]> samples_;
// Contains all strata of elementary (0,2) intervals. Each value is true/false
// representing if a sample point resides there.
vector<vector<bool>> strata_ {{false}};
// The sample grid is used for nearest neighbor lookups.
std::unique_ptr<const Point*[]> sample_grid_;
int n_ = 1; // Number of samples in the next pass.
bool is_power_of_4_ = true;
int dim_ = 1; // Number of cells in one dimension in next pass, i.e. sqrt(n).
// Number of candidates to use for best-candidate sampling.
const int num_candidates_;
random_gen rng;
};
void SampleSet::SubdivideStrata() {
const int old_n = n_;
n_ *= 2;
is_power_of_4_ = !is_power_of_4_;
if (!is_power_of_4_) {
dim_ *= 2;
}
// For the first sample this is 1x1. For sample 2 it's 1x2 and 2x1. For
// samples 3-4 it's 4x1, 2x2, and 1x4. So every time it goes up by one.
strata_.resize(strata_.size()+1);
// Clear all the strata and mark the occupied ones again.
std::fill(strata_.begin(), strata_.end(), vector<bool>(n_, false));
std::fill_n(sample_grid_.get(), n_, nullptr);
for (int i = 0; i < old_n; i++) {
UpdateStrata(i);
}
}
// This generates a sample within the grid position, verifying that it doesn't
// overlap strata with any other sample.
Point SampleSet::GetCandidateSample(const vector<int>& valid_x_strata,
const vector<int>& valid_y_strata) {
Point sample;
int x_strata_index = valid_x_strata[UniformInt(0, valid_x_strata.size()-1, rng)];
int y_strata_index = valid_y_strata[UniformInt(0, valid_y_strata.size()-1, rng)];
double strata_width = 1.0 / n_;
sample.x = UniformRand(strata_width*x_strata_index,
strata_width*(x_strata_index+1.0), rng);
sample.y = UniformRand(strata_width*y_strata_index,
strata_width*(y_strata_index+1.0), rng);
assert(sample.x >= 0.0 && sample.x < 1.0 && sample.y >= 0 && sample.y < 1.0);
return sample;
}
void SampleSet::GenerateFirstSample() {
Point sample = {UniformRand(0,1,rng), UniformRand(0,1,rng)};
AddSample(0, sample);
}
void SampleSet::GenerateNewSample(const int sample_index,
const int x_pos,
const int y_pos) {
Point best_candidate;
const std::pair<vector<int>, vector<int>>& valid_strata =
GetValidStrata(x_pos, y_pos, strata_);
if (num_candidates_ <= 1) {
best_candidate =
GetCandidateSample(valid_strata.first, valid_strata.second);
} else {
vector<Point> candidate_samples(num_candidates_);
for (int i = 0; i < num_candidates_; i++) {
candidate_samples[i] =
GetCandidateSample(valid_strata.first, valid_strata.second);
}
best_candidate = GetBestCandidateOfSamples(
candidate_samples, sample_grid_.get(), dim_);
}
AddSample(sample_index, best_candidate);
}
void SampleSet::UpdateStrata(const int sample_index) {
const Point& sample = samples_[sample_index];
for (int i = 0, strata_n_cols = n_, strata_n_rows = 1;
strata_n_cols >= 1;
strata_n_cols /= 2, strata_n_rows *= 2, i++) {
int x_pos = sample.x * strata_n_cols;
int y_pos = sample.y * strata_n_rows;
strata_[i][y_pos*strata_n_cols + x_pos] = true;
}
const int x_pos = sample.x * dim_, y_pos = sample.y * dim_;
sample_grid_[y_pos*dim_ + x_pos] = &sample;
}
void SampleSet::AddSample(const int i,
const Point& sample) {
samples_[i] = sample;
UpdateStrata(i);
}
/*
* The core of Christensen et al.'s algorithm.
*/
std::unique_ptr<Point[]> GenerateSamples(
const int num_samples,
const int num_candidates, random_gen& rng,
const subquad_fn subquad_func = &GetSubQuadrantsSwapXOrY) {
SampleSet sample_set(num_samples, num_candidates, rng);
sample_set.GenerateFirstSample();
// Number of samples from the previous iteration. Always a power of 4.
int n = 1;
while (n < num_samples) {
// Subdivide the strata. On the first call, this takes the strata from 1x1
// to 2x1 and 1x2.
sample_set.SubdivideStrata();
// For every sample, we first generate the diagonally opposite one at the
// current grid level.
for (int i = 0; i < n && n+i < num_samples; i++) {
const Point& sample = sample_set.sample(i);
int x_pos = sample.x * sample_set.dim();
int y_pos = sample.y * sample_set.dim();
sample_set.GenerateNewSample(/*sample_index=*/n+i, x_pos ^ 1, y_pos ^ 1);
}
if (2*n >= num_samples) break;
// Subdivide the strata, for instance strata of 2x1 and 1x2 will become
// strata of 4x1, 2x2, and 1x4.
sample_set.SubdivideStrata();
// For the remaining subquadrants, we need to pick what order to sample from
// them. This will get us the set of subquadrants for the next n samples.
const std::vector<std::pair<int, int>> sub_quad_choices =
(*subquad_func)(sample_set.samples(), sample_set.dim(), rng);
for (int i = 0; i < n && 2*n+i < num_samples; i++) {
sample_set.GenerateNewSample(/*sample_index=*/2*n+i,
sub_quad_choices[i].first,
sub_quad_choices[i].second);
}
// Finally we sample from the subquadrants diagonally opposite to the ones
// we just did.
for (int i = 0; i < n && 3*n+i < num_samples; i++) {
sample_set.GenerateNewSample(/*sample_index=*/3*n+i,
sub_quad_choices[i].first ^ 1,
sub_quad_choices[i].second ^ 1);
}
n *= 4;
}
return sample_set.ReleaseSamples();
}
std::unique_ptr<Point[]> GetPMJ02Samples(
const int num_samples, random_gen& rng) {
return GenerateSamples(num_samples, /*num_candidates=*/1, rng);
}
std::unique_ptr<Point[]> GetPMJ02SamplesWithBlueNoise(
const int num_samples, random_gen& rng) {
return GenerateSamples(num_samples, kBestCandidateSamples, rng);
}
}//namespace
} // namespace pmj
#endif // SAMPLE_GENERATION_PMJ02_H_
|