File: pmj02.h

package info (click to toggle)
r-cran-spacefillr 0.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,472 kB
  • sloc: ansic: 32,867; cpp: 5,657; makefile: 2
file content (296 lines) | stat: -rwxr-xr-x 10,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * Copyright (C) Andrew Helmer 2020.
 * Licensed under MIT Open-Source License: see LICENSE.
 *
 * These functions generate PMJ(0,2) sequences from
 * "Progressive Multi-Jittered Sample Sequences", Christensen et al. 2018, using
 * the algorithm from "Efficient Generation of Points that Satisfy
 * Two-Dimensional Elementary Intervals", Matt Pharr, 2019.
 *
 * Thanks to Matt's paper, the non-best-candidate sampling is quite fast. On my
 * 2017 Macbook Pro, 65536 samples takes <50ms, i.e. it generates 1.43 million
 * samples/sec, with -O3 compilation. Best candidate sampling is slower at
 * ~500,000 samples/sec with 10 candidates. If you want to use the
 * Best-Candidate samples in a production raytracer, for example, probably
 * better to precompute a bunch of tables and do lookups into them. Also worth
 * noting that the pmjbn algorithm (in pmj.cc) has much better blue-noise
 * characteristics than pmj02bn.
 */
#ifndef SAMPLE_GENERATION_PMJ02_H_
#define SAMPLE_GENERATION_PMJ02_H_

#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <random>
#include <stack>
#include <utility>
#include <vector>

#include "pmj02_util.h"
#include "select_subquad.h"
#include "util.h"

namespace pmj {

namespace {
// Generates progressive multi-jittered (0,2) samples WITHOUT blue noise
// properties. Takes in a number of samples.
std::unique_ptr<Point[]> GetPMJ02Samples(const int num_samples, random_gen& rng);

// Generates progressive multi-jittered (0,2) samples with blue noise
// properties.
std::unique_ptr<Point[]> GetPMJ02SamplesWithBlueNoise(
    const int num_samples, random_gen& rng);

/*
 * -----------------------------------------------------------------------
 * These functions are just for experimentation, but likely not useful for
 * real purposes, since they perform worse than the ones above.
 * -----------------------------------------------------------------------
 */

using std::vector;


/*
 * The SampleSet is a class that contains the generated samples, as well as the
 * currently populated strata. It's used to generate new samples within the
 * unpopulated strata.
 */
class SampleSet {
    public:
        explicit SampleSet(const int num_samples,
                           const int num_candidates,
                           random_gen& _rng)
            : num_candidates_(num_candidates), rng(_rng) {
            samples_ = std::unique_ptr<Point[]>(new Point[num_samples]());
            std::fill_n(samples_.get(), num_samples, Point({0.0, 0.0}));

            int grid_memory_size = 1;
            while (grid_memory_size < num_samples)
                grid_memory_size <<= 2;
            sample_grid_ = std::unique_ptr<const Point*[]>(new const Point*[grid_memory_size]());
            std::fill_n(sample_grid_.get(), grid_memory_size, nullptr);
        }

        void GenerateFirstSample();

        // This generates a new sample at the given index, given the X position and Y
        // position of the subquadrant. It won't generate a new sample in an existing
        // strata.
        void GenerateNewSample(const int sample_index,
                               const int x_pos,
                               const int y_pos);

        // This function should be called after every power of 2 samples. It divides
        // the strata up into the next elementary (0,2) intervals, and marks the
        // occupied strata..
        void SubdivideStrata();

        std::unique_ptr<Point[]> ReleaseSamples() {
            return std::move(samples_);
        }

        const Point& sample(const int sample_index) const {
            return samples_[sample_index];
        }
        const Point* samples() const {
            return samples_.get();
        }
        const int dim() const { return dim_; }

        private:
            // Adds a new point at index i. Updates the necessary data structures.
            void AddSample(const int i, const Point& sample);

            // Given a sample, sets all the correct strata to true.
            void UpdateStrata(const int sample_index);

            Point GetCandidateSample(const vector<int>& valid_x_strata,
                                     const vector<int>& valid_y_strata);

            std::unique_ptr<Point[]> samples_;

            // Contains all strata of elementary (0,2) intervals. Each value is true/false
            // representing if a sample point resides there.
            vector<vector<bool>> strata_ {{false}};

            // The sample grid is used for nearest neighbor lookups.
            std::unique_ptr<const Point*[]> sample_grid_;

            int n_ = 1;  // Number of samples in the next pass.
            bool is_power_of_4_ = true;
            int dim_ = 1;  // Number of cells in one dimension in next pass, i.e. sqrt(n).

            // Number of candidates to use for best-candidate sampling.
            const int num_candidates_;
            random_gen rng;
};

void SampleSet::SubdivideStrata() {
    const int old_n = n_;

    n_ *= 2;
    is_power_of_4_ = !is_power_of_4_;
    if (!is_power_of_4_) {
        dim_ *= 2;
    }

    // For the first sample this is 1x1. For sample 2 it's 1x2 and 2x1. For
    // samples 3-4 it's 4x1, 2x2, and 1x4. So every time it goes up by one.
    strata_.resize(strata_.size()+1);

    // Clear all the strata and mark the occupied ones again.
    std::fill(strata_.begin(), strata_.end(), vector<bool>(n_, false));
    std::fill_n(sample_grid_.get(), n_, nullptr);
    for (int i = 0; i < old_n; i++) {
        UpdateStrata(i);
    }
}

// This generates a sample within the grid position, verifying that it doesn't
// overlap strata with any other sample.
Point SampleSet::GetCandidateSample(const vector<int>& valid_x_strata,
                                    const vector<int>& valid_y_strata) {
    Point sample;

    int x_strata_index = valid_x_strata[UniformInt(0, valid_x_strata.size()-1, rng)];
    int y_strata_index = valid_y_strata[UniformInt(0, valid_y_strata.size()-1, rng)];

    double strata_width = 1.0 / n_;
    sample.x = UniformRand(strata_width*x_strata_index,
                           strata_width*(x_strata_index+1.0), rng);
    sample.y = UniformRand(strata_width*y_strata_index,
                           strata_width*(y_strata_index+1.0), rng);

    assert(sample.x >= 0.0 && sample.x < 1.0 && sample.y >= 0 && sample.y < 1.0);

    return sample;
}

void SampleSet::GenerateFirstSample() {
    Point sample = {UniformRand(0,1,rng), UniformRand(0,1,rng)};
    AddSample(0, sample);
}

void SampleSet::GenerateNewSample(const int sample_index,
                                  const int x_pos,
                                  const int y_pos) {
    Point best_candidate;

    const std::pair<vector<int>, vector<int>>& valid_strata =
        GetValidStrata(x_pos, y_pos, strata_);

    if (num_candidates_ <= 1) {
        best_candidate =
            GetCandidateSample(valid_strata.first, valid_strata.second);
    } else {
        vector<Point> candidate_samples(num_candidates_);
        for (int i = 0; i < num_candidates_; i++) {
            candidate_samples[i] =
                GetCandidateSample(valid_strata.first, valid_strata.second);
        }

        best_candidate = GetBestCandidateOfSamples(
            candidate_samples, sample_grid_.get(), dim_);
    }
    AddSample(sample_index, best_candidate);
}

void SampleSet::UpdateStrata(const int sample_index) {
    const Point& sample = samples_[sample_index];

    for (int i = 0, strata_n_cols = n_, strata_n_rows = 1;
         strata_n_cols >= 1;
         strata_n_cols /= 2, strata_n_rows *= 2, i++) {
        int x_pos = sample.x * strata_n_cols;
        int y_pos = sample.y * strata_n_rows;
        strata_[i][y_pos*strata_n_cols + x_pos] = true;
    }

    const int x_pos = sample.x * dim_, y_pos = sample.y * dim_;
    sample_grid_[y_pos*dim_ + x_pos] = &sample;
}

void SampleSet::AddSample(const int i,
                          const Point& sample) {
    samples_[i] = sample;
    UpdateStrata(i);
}

/*
 * The core of Christensen et al.'s algorithm.
 */
std::unique_ptr<Point[]> GenerateSamples(
        const int num_samples,
        const int num_candidates, random_gen& rng,
        const subquad_fn subquad_func = &GetSubQuadrantsSwapXOrY) {
    SampleSet sample_set(num_samples, num_candidates, rng);

    sample_set.GenerateFirstSample();

    // Number of samples from the previous iteration. Always a power of 4.
    int n = 1;
    while (n < num_samples) {
        // Subdivide the strata. On the first call, this takes the strata from 1x1
        // to 2x1 and 1x2.
        sample_set.SubdivideStrata();

        // For every sample, we first generate the diagonally opposite one at the
        // current grid level.
        for (int i = 0; i < n && n+i < num_samples; i++) {
            const Point& sample = sample_set.sample(i);

            int x_pos = sample.x * sample_set.dim();
            int y_pos = sample.y * sample_set.dim();

            sample_set.GenerateNewSample(/*sample_index=*/n+i, x_pos ^ 1, y_pos ^ 1);
        }

        if (2*n >= num_samples) break;

        // Subdivide the strata, for instance strata of 2x1 and 1x2 will become
        // strata of 4x1, 2x2, and 1x4.
        sample_set.SubdivideStrata();

        // For the remaining subquadrants, we need to pick what order to sample from
        // them. This will get us the set of subquadrants for the next n samples.
        const std::vector<std::pair<int, int>> sub_quad_choices =
            (*subquad_func)(sample_set.samples(), sample_set.dim(), rng);
        for (int i = 0; i < n && 2*n+i < num_samples; i++) {
            sample_set.GenerateNewSample(/*sample_index=*/2*n+i,
                                         sub_quad_choices[i].first,
                                         sub_quad_choices[i].second);
        }

        // Finally we sample from the subquadrants diagonally opposite to the ones
        // we just did.
        for (int i = 0; i < n && 3*n+i < num_samples; i++) {
            sample_set.GenerateNewSample(/*sample_index=*/3*n+i,
                                         sub_quad_choices[i].first ^ 1,
                                         sub_quad_choices[i].second ^ 1);
        }

        n *= 4;
    }

    return sample_set.ReleaseSamples();
}


std::unique_ptr<Point[]> GetPMJ02Samples(
        const int num_samples, random_gen& rng) {
    return GenerateSamples(num_samples, /*num_candidates=*/1, rng);
}
std::unique_ptr<Point[]> GetPMJ02SamplesWithBlueNoise(
        const int num_samples, random_gen& rng) {
    return GenerateSamples(num_samples, kBestCandidateSamples, rng);
}

}//namespace

}  // namespace pmj

#endif  // SAMPLE_GENERATION_PMJ02_H_