1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*
* Copyright (C) Andrew Helmer 2020.
* Licensed under MIT Open-Source License: see LICENSE.
*
* This file implements different methods of selecting the subquadrants in
* between odd and even powers of 4 for the PMJ and PMJ02 algorithms. Compared
* to random, they make a big difference for the overall error!
*/
#ifndef SAMPLE_GENERATION_SELECT_SUBQUAD_H_
#define SAMPLE_GENERATION_SELECT_SUBQUAD_H_
#include <iostream>
#include <utility>
#include <vector>
#include "util.h"
namespace pmj {
typedef std::vector<std::pair<int, int>> (*subquad_fn)(
const Point samples[], const int dim, random_gen& rng);
/*
* This will randomly choose once to swap X or swap Y, and will always swap
* X or Y for all subquadrants. For PMJ02, this ensures that the next set of
* samples are themselves a (0,2) sequence. Based off some basic analysis,
* it seems like this is the only way to maintain this property.
*
* Credit goes to Simon Brown for discovering this method with his Rust
* implementation: https://github.com/sjb3d/pmj
*/
std::vector<std::pair<int, int>> GetSubQuadrantsSwapXOrY(
const Point samples[],
const int dim, random_gen& rng);
/*
* Pick which subquadrants to use, using the ox-plowing technique from
* Christensen et al.
*/
std::vector<std::pair<int, int>> GetSubQuadrantsOxPlowing(
const Point samples[],
const int dim, random_gen& rng);
/*
* Pick which subquadrants to use randomly. No reason to actually use this:
* OxPlowing is better for pmj and ShuffleSwap is better for pmj(0,2).
*/
std::vector<std::pair<int, int>> GetSubQuadrantsRandomly(
const Point samples[],
const int dim, random_gen& rng);
std::vector<std::pair<int, int>> GetSubQuadrantsRandomly(
const Point samples[],
const int dim, random_gen& rng) {
const int quad_dim = dim / 2;
const int n = quad_dim*quad_dim;
std::vector<std::pair<int, int>> choices(n);
for (int i = 0; i < n; i++) {
const auto& sample = samples[i];
int x_pos = sample.x * dim;
int y_pos = sample.y * dim;
if (UniformRand(0,1,rng) < 0.5) {
choices[i] = {x_pos ^ 1, y_pos};
} else {
choices[i] = {x_pos, y_pos ^ 1};
}
}
return choices;
}
std::vector<std::pair<int, int>> GetSubQuadrantsSwapXOrY(
const Point samples[],
const int dim, random_gen& rng) {
const int quad_dim = dim / 2;
const int n = quad_dim*quad_dim;
std::vector<std::pair<int, int>> choices(n);
const bool swap_x = UniformRand(0,1,rng) < 0.5;
for (int i = 0; i < n; i++) {
const Point& sample = samples[i];
int x_pos = sample.x * dim;
int y_pos = sample.y * dim;
if (swap_x) x_pos = x_pos ^ 1;
else
y_pos = y_pos ^ 1;
choices[i] = {x_pos, y_pos};
}
return choices;
}
std::vector<std::pair<int, int>> GetSubQuadrantsOxPlowing(
const Point samples[],
const int dim, random_gen& rng) {
const int quad_dim = dim / 2;
const int n = quad_dim*quad_dim;
std::vector<std::pair<int, int>> choices(n);
// First we want to get the subquadrant positions, and also the sampling order
// from the original samples.
std::vector<int> first_cells(n*2);
std::vector<int> quadrant_order(n);
for (int i = 0; i < n; i++) {
const auto& sample = samples[i];
int x_pos = sample.x * dim;
int y_pos = sample.y * dim;
const int quadrant_index = (y_pos / 2)*(quad_dim) + (x_pos / 2);
first_cells[2*quadrant_index] = x_pos;
first_cells[2*quadrant_index+1] = y_pos;
quadrant_order[quadrant_index] = i;
}
// This method doesn't always work successfully, so we try a few times. In
// the worst case, we'll always give a valid selection at the end anyway. In
// practice, it virtually always succeeds within 10 attempts.
for (int attempt = 0; attempt < 10; attempt++) {
std::vector<int> choice_balance_x(quad_dim);
std::vector<int> choice_balance_y(quad_dim);
bool up = true;
for (int col = 0; col < quad_dim; col++) {
up = !up;
for (int i = 0; i < quad_dim; i++) {
const int row = up ? i : quad_dim - i - 1;
const int quadrant_index = row*quad_dim + col;
int x_pos = first_cells[2*quadrant_index];
int y_pos = first_cells[2*quadrant_index+1];
const bool last = (i == quad_dim - 1);
const int balance_y = choice_balance_y[row];
const int balance_x = choice_balance_x[col];
bool swap_x = false;
if (balance_y != 0 && !last) {
swap_x = (balance_y > 0) != (y_pos & 1);
} else if (balance_x != 0) {
swap_x = (balance_x > 0) == (x_pos & 1);
} else {
swap_x = UniformRand(0,1,rng) < 0.5;
}
x_pos = swap_x ? x_pos ^ 1 : x_pos;
y_pos = (!swap_x) ? y_pos ^ 1 : y_pos;
choices[quadrant_order[quadrant_index]].first = x_pos;
choices[quadrant_order[quadrant_index]].second = y_pos;
choice_balance_x[col] += (x_pos & 1) ? 1 : -1;
choice_balance_y[row] += (y_pos & 1) ? 1 : -1;
}
}
// Always unbalanced, just return.
if (n == 1) {
return choices;
}
bool is_balanced = true;
for (int row = 0; row < quad_dim; row++) {
if (choice_balance_y[row] != 0) {
is_balanced = false;
break;
}
}
if (is_balanced) break;
}
return choices;
}
} // namespace pmj
#endif // SAMPLE_GENERATION_SELECT_SUBQUAD_H_
|